Guidelines regarding graduate student progress and the qualifying exam.

I. All graduate students will turn in a Research Progress Report at the end of each semester. Two reports noting unsatisfactory progress will disqualify a student from continuing in the program. Failing to submit a report will be considered equivalent to unsatisfactory progress.

II. All students will establish their advisory committee by the end of their first semester in the program. This committee will meet by the end of the student’s first semester to (1) define the limits and expectations of the qualifying exam which will be completed at the end of the second semester, (2) provide guidance to the student on the project proposal developed in BIOL 600, and (3) complete the student’s program plan form.

III. The student’s program plan should be evaluated after the qualifying exam is completed should remedial course work be necessary.

IV. The qualifying exam will be constructed and administered by the students advisory committee and may be either written, oral or a combination. The general nature of the exam is to support and encourage the student’s progress within their research emphasis.

V. A minor change to the graduate curriculum was made to allow the use of an oral qualifying exam. The writing proficiency component of the curriculum was changed from the written exam to BIOL 600 which has a more structured and appropriate writing requirement.

VI. Guidelines in the form of learning objectives for the exam should include, but are not limited to, the following:

1) Demonstrate a clear general knowledge of the historical and current literature within their larger chosen field of study (i.e. ecology, cell and molecular biology, botany, microbiology etc.). This should include, both foundational material as well as current research and directions within the larger field. Students should be able to articulate the distinction between applied vs. basic scientific investigations in the field.

2) In the context of their particular project area, the student should have a basic knowledge of experimental design, methodology and techniques pertinent to their project. They should also demonstrate an understanding of hypothesis construction, including selection of appropriate controls and how each applies to the student’s project.

3) Also in the context of their proposed project, the students should have a solid understanding of the relevant literature and general knowledge necessary to both complete their project and place their results in a larger context.

4) The student may make a presentation to the committee summarizing his/her progress on the project. This may include any combination of preliminary data, literature review, experimental design, plans for data analysis, interpretation of projected results,
etc. The purpose is to encourage the integration of the preceding objectives with the confines of the student’s project.

VII. The student’s performance on the qualifying exam will be rated by the committee and will be given one of three evaluative marks:

- **Excellent** – student demonstrates exceptional understanding and abilities (above and beyond the expectations of the committee) in all areas (foundational knowledge, methodology, project specific literature etc.).
- **Satisfactory** – the student demonstrates at least reasonable understanding in all areas (foundational knowledge, methodology, project specific literature etc.) but may be weak in one or more areas.
- **Unsatisfactory** – the student does not demonstrate adequate knowledge or understanding in one or more areas (foundational knowledge, methodology, project specific literature etc.).

VIII. Students who receive an evaluative mark of unsatisfactory will not proceed to candidacy, will have to retake the qualifying exam within one year of the date of the first exam and may be asked to complete remedial classes or work above and beyond those established in the program plan. A second evaluation of unsatisfactory will mean the student is released from the graduate program. Students who receive an evaluative mark of satisfactory may be asked to complete some remedial classes or work before they defend their thesis.

IX. An qualifying exam form to be filled out and signed by the committee members and the student at the conclusion of the exam will be turned in to the graduate coordinator and be included in the student’s file. This form will serve as recognition of exam completion and list any necessary remediation to be completed by the student.
Qualifying Exam assessment and evaluation form. At the conclusion of the exam the advisory committee will review the student’s response as they pertain to the learning objectives and guidelines below. Any remedial activities required by the committee must be noted and the form needs to be signed by the committee and the student.

_____ Demonstrate a clear knowledge of the historical and current literature within the field. This can include recent progress and new directions of current research by prominent figures in the field. The nature of applied vs. basic scientific investigations in the field should be included when applicable.

_____ Demonstrate an understanding of hypothesis construction, including selection of appropriate controls. The nature of limiting assumptions and basic experimental design are two essential features of this process.

_____ Within a field the student should have a basic knowledge of biological assays and/or analytical tools pertinent to their project, and those commonly used in the field.

______ If possible (and highly encouraged) is the presentation of preliminary data. The committee should have modest expectations. The purpose is to encourage the integration of the preceding objectives within the confines of the student’s project.

Passed ______ Retake_______ and target date______________.

Advisor_________________________ Student_________________________

Committee ________________ ________________
________________________ ____________________
________________________ ____________________