Program

BS in Physics
- Option in General Physics
- Option in Professional Physics
- Advanced Study Pattern
- Applied Physics Pattern

Minor in Physics

Single Subject Teaching
- Credential in Science

“Look deep into nature, then you will understand everything better.” —Albert Einstein (1879–1955)

The Department of Physics offers the Bachelor of Science Degree in Physics with the choice of two options. The department also offers a minor in physics. The Option in Professional Physics has two advising patterns. The Advanced Study pattern is the traditional B.S. program designed to prepare students for graduate study or for professional careers in government or industry. The Applied Physics pattern is designed to prepare students for careers in technical fields, such as optics, electronics or materials science.

The Option in General Physics is designed to prepare students for teaching secondary school physics, with additional subject matter breadth across all sciences. This option fulfills all requirements for the Single Subject Teaching Credential in Science with a Concentration in Physics and a supplementary authorization in a second science. This option is also for students who are interested in physics-related interdisciplinary fields such as biophysics, geophysics, atmospheric sciences, physical oceanography, health physics, or environmental science.

The physics minor greatly strengthens the preparation of students majoring in mathematics, engineering, computer science, chemistry, geosciences, biology, and other fields of science or technology. It is particularly important for students who intend to pursue graduate studies in physical chemistry, geophysics, biophysics, or medical physics. Students in such fields as mathematics, chemistry, engineering, or computer science may wish to consider physics as a second major. These fields are very compatible with physics, and some course work will satisfy the requirements for both majors.

Facilities

Special facilities available include laboratories for modern optics, X-ray diffraction and fluorescence, gamma ray spectroscopy, superconductivity, and nuclear physics.

Career Outlook

While graduate work is necessary for entry into some physics-related careers, physicists with the baccalaureate enjoy excellent employment opportunities in a wide variety of areas including optics and telecommunications, space, defense, energy, and environmental science.

Physicists are also employed in research and development projects involving electronic systems and devices, optics, computers, nuclear reactors, microwaves, and vacuum systems. Others find employment in such diverse fields as criminal investigation or public health.

At the present time there is a huge demand for high school science teachers. The Option in General Physics is the ideal preparation for such a career.

In addition to consulting faculty, students with career-related questions are encouraged to visit the Offices of Advising and Orientation, and Counseling and Career Planning. These offices provide assistance with exploration of life goals, academic and career planning, and information on occupations related to majors as well as job market and placement trends.
The Bachelor of Science in Physics

Total Course Requirements for the Bachelor's Degree: 120 units

See “Requirements for the Bachelor’s Degree” in the University Catalog for complete details on general degree requirements. A minimum of 40 units, including those required for the major, must be upper division.

A suggested Major Academic Plan (MAP) has been prepared to help students meet all graduation requirements within four years. Please request a plan from your major advisor or view it and other current advising information on the CSU, Chico Web.

General Education Requirements: 48 units

See “General Education Requirements” in the University Catalog and the Class Schedule for the most current information on General Education Requirements and course offerings. The course requirements marked below with an asterisk (*) may also be applied toward General Education. Physics majors may meet the Breadth Area B2 requirement by completing BIOL 151.

Option in General Physics

HIST 130 may be used to fulfill Breadth Area C1, C2, or C3 requirements; POLS 155 may be used to fulfill any one of the Breadth Area D1, D2, or D3 requirements; and HCSV 451 may be used to fulfill Area E requirements.

Cultural Diversity Course Requirements: 6 units

See “Cultural Diversity” in the University Catalog. Most courses taken to satisfy these requirements may also apply to General Education.

American Institutions Requirement: 6 units

See the “American Institutions Requirement” under “Bachelor’s Degree Requirements.” This requirement is normally fulfilled by completing HIST 130 and POLS 155. Courses used to satisfy this requirement do not apply to General Education.

Literacy Requirement:

See “Mathematics and Writing Requirements” in the University Catalog. Writing proficiency in the major is a graduation requirement and may be demonstrated through satisfactory completion of a course in your major which has been designated as the Writing Proficiency (WP) course for the semester in which you take the course. Students who earn below a C– are required to repeat the course and earn a C– or better to receive WP credit. See the Class Schedule for the designated WP course for each semester. You must pass ENGL 130 (or its equivalent) with a C– or better before you may register for a WP course.

Course Requirements for the Major: 70–81 units

The following courses, or their approved transfer equivalents, are required of all candidates for this degree.

Major Core Program: 46 units

Lower-Division Requirements: 36 units

9 courses required:

CHEM 111 General Chemistry 4.0 FS *
Prerequisites: Second-year high school algebra; one year high school chemistry. (One year of high school physics and one year of high school mathematics past Algebra II are recommended.)
CHEM 112 General Chemistry 4.0 FS
Prerequisites: CHEM 111
MATH 120 Analytic Geometry and Calculus 4.0 FS *
Prerequisites: Completion of ELM requirement; both MATH 118 and MATH 119 (or high school equivalent); a score that meets department guidelines on a department administered calculus readiness exam.
MATH 121 Analytic Geometry and Calculus 4.0 FS
Prerequisites: MATH 120
MATH 220 Analytic Geometry and Calculus 4.0 FS
Prerequisites: MATH 121
MATH 260 Elem Differential Equations 4.0 FS
Prerequisites: MATH 121
PHYS 204A Mechanics 4.0 FS *
Prerequisites: High school physics or faculty permission. Concurrent enrollment in or prior completion of MATH 121 (second semester of calculus) or equivalent.
PHYS 204B Electricity and Magnetism 4.0 FS
Prerequisites: MATH 121, PHYS 204A with a grade of C– or higher.
PHYS 204C Heat/Wave Motion/Sound/Light 4.0 FS
Prerequisites: MATH 121, PHYS 204A with a grade of C– or higher.

Upper-Division Requirements: 10 units

4 courses required:

PHYS 300A Modern Physics I 3.0 FA
Prerequisites: PHYS 204A, PHYS 204B, PHYS 204C, or PHYS 202A and PHYS 202B and calculus with faculty permission.
PHYS 300B Modern Physics II 3.0 SP
Prerequisites: PHYS 300A.

PHYS 427 Advanced Laboratory 3.0 FA WP
Prerequisites: ENGL 130 (or its equivalent) with a grade of C– or higher; PHYS 300B.
PHYS 491 Physics Seminar 1.0 SP
Prerequisites: Upper-division standing in physics.

Major Option Course Requirements: 24–35 units

The following courses, or their approved transfer equivalents, are required dependent upon the option chosen. Students must select one of the following options for completion of the major course requirements.

The Option in Professional Physics: 24–25 units

This option is for students who intend to pursue graduate study in physics or related fields or who plan to enter careers in technical fields.

Option Core: 9 units

3 courses required:

PHYS 301A Analytical Mechanics 3.0 FA
Prerequisites: PHYS 301A.
PHYS 302A Electricity and Magnetism 3.0 FA
Prerequisites: PHYS 204A.
PHYS 415 Thermal Physics 3.0 S2
Prerequisites: MATH 361, PHYS 300A.
PHYS 435A Quantum Mechanics 3.0 FA
Prerequisites: MATH 361, PHYS 300A.
PHYS 435B Quantum Mechanics 3.0 SP
Prerequisites: PHYS 435A.

Applied Physics Pattern: 16 units

This option pattern is for students intending to pursue graduate study in physics or related fields. This is also suited to many technical careers.

6 courses required:

PHYS 415 Thermal Physics 3.0 S2
Prerequisites: MATH 361, PHYS 300A.
PHYS 435A Quantum Mechanics 3.0 FA
Prerequisites: MATH 361, PHYS 300A.
PHYS 435B Quantum Mechanics 3.0 SP
Prerequisites: PHYS 435A.

The Option in General Physics: 35 units

This option fulfills all requirements for the Single Subject Teaching Credential in Science with a Concentration in Physics and a supplementary authorization in a second science. This option is also excellent preparation for students considering physics-related interdisciplinary fields. Students who choose this option should consult with their major advisor.

5 courses required:

BIOL 151 Prin of Cell and Molec Biology 4.0 FS
Prerequisites: CHEM 111.
BIOL 152 Prin Ecol, Evol, Org Biology 4.0 FS
Prerequisites: BIOL 151; recommend CHEM T112 or concurrent enrollment.
GEOS 102 Physical Geology 3.0 FS *
Prerequisites: BIOL 152; recommend CHEM T112.
GEOS 300 Earth System Science 3.0 FA WP
Prerequisites: ENGL 130 (or its equivalent) with a grade of C– or higher; CHEM 107 or equivalent; PHYS 202A, PHYS 202B.
PHYS 489T Internship in Physics Teaching 3.0 FA
Prerequisites: PHYS 300B and faculty permission.
The General Physics Option described above, along with a professional education program, fulfills all requirements for the Single Subject Teaching Credential Program in Science with a Concentration in Physics.

The Faculty
Eric J. Ayars, 2003, Assist Professor, PhD, No Carolina State U.
Louis J. Buchholz, 1986, Professor, PhD, Stanford U.
Eric R. Dietz, 1983, Professor, PhD, UC Berkeley.
Christopher A. Gaffney, 1987, Chair, Professor, PhD, U Notre Dame.
Philip W. Gash, 1986, Professor, PhD, U Connecticut.
David T. Kagan, 1981, Professor, PhD, UC Berkeley.
Robert L. Paulson, 1973, Professor, PhD, UC Davis.
Xueli Zou, 2000, Assoc Professor, PhD, Ohio State U.

Emeritus Faculty
Fred L. Boos Jr, 1957, Professor Emeritus, MS, Macalester Coll.
Cheuk-Kin Chau, 1975, Professor Emeritus, PhD, U Illinois.
Michael R. McGie, 1966, Professor Emeritus, PhD, UC Davis.
Lorin E. Millet, 1967, Professor Emeritus, PhD, BYU.
John C. Young, 1970, Professor Emeritus, PhD, UC Davis.

Physics Course Offerings
Please see the section on “Course Description Symbols and Terms” in the University Catalog for an explanation of course description terminology and symbols, the course numbering system, and course credit units. All courses are lecture and discussion and employ letter grading unless otherwise stated. Some prerequisites may be waived with faculty permission. Many syllabi are available on the Chico Web.

PHYS 100 Concepts in Physics 3.0 Fa/Spr
A non-mathematical General Education lecture, laboratory-activity course with opportunities for discussion. Topics include Newtonian Mechanics, properties of matter, heat, wave motion, sound, electricity, and light. Not intended for students who have completed high school physics. 2.0 hours discussion, 2.0 hours activity. This is an approved General Education course.

PHYS 202A General Physics 4.0 Fa/Spr
Prerequisites: High school physics or faculty permission. High school trigonometry and second-year high school algebra or equivalent (MATH 051 and MATH 118 at CSU, Chico). Mechanics, properties of matter, wave motion, sound, heat. Science majors are encouraged to take PHYS 204A instead of this course. 3.0 hours discussion, 3.0 hours laboratory. This is an approved General Education course. CAN PHYS 2.

PHYS 202B General Physics 4.0 Fa/Spr
Prerequisites: PHYS 202A. Light, electricity, magnetism, selected topics in modern physics. Science majors are encouraged to take PHYS 204B instead of this course. Algebra and trigonometry are used. 3.0 hours discussion, 3.0 hours laboratory. CAN PHYS 4.

PHYS 202W Physics Problem Session 1.0 Fa/Spr
Prerequisites: Concurrent enrollment in PHYS 202A. Designed to supplement PHYS 202A with additional applications of introductory physics. Provides the student with the opportunity for additional assistance in developing problem-solving abilities. 2.0 hours activity. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 202Y Physics Problem Session 1.0 Fa/Spr
Prerequisites: PHYS 202A. Concurrent enrollment in PHYS 202B. Designed to supplement PHYS 202B with additional applications of introductory physics. Provides the student with the opportunity for additional assistance in developing problem-solving abilities. 2.0 hours activity. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 204A Physics for Students of Science and Engineering: Mechanics 4.0 Fa/Spr
Prerequisites: High school physics or faculty permission. Concurrent enrollment in or prior completion of MATH 121 (second semester of calculus) or equivalent. Vectors, kinematics, particle dynamics, friction, work, energy, power, momentum, dynamics and statics of rigid bodies, oscillations, gravitation, fluids. Calculus used. A grade of C– or higher is required before progressing to either PHYS 204B or PHYS 204C. 3.0 hours discussion, 3.0 hours laboratory. This is an approved General Education course. CAN PHYS 8.
PHYS 204A Physics for Students of Science and Engineering: Electricity and Magnetism 4.0 Fa/Spr
Prerequisites: MATH 121, PHYS 204A with a grade of C– or higher.
Charge and matter, electric field, Gauss’ law, electric potential, capacitors and dielectrics, current and resistance, magnetic field, Ampère’s law, Faraday’s law of induction, magnetic properties of matter, electromagnetic oscillations and waves. Calculus used. 3.0 hours discussion, 3.0 hours laboratory. CAN PHYS12.

PHYS 204C Physics for Students of Science and Engineering: Heat, Wave Motion, Sound, Light, and Modern Topics 4.0 Fa/Spr
Prerequisites: MATH 121, PHYS 204A with a grade of C– or higher.
Temperature, first and second law of thermodynamics, and kinetic theory. Waves in elastic media, standing waves and resonance, and sound. Ray and wave optics, reflection, refraction, lenses, mirrors, diffraction, and polarization. Selected topics in modern physics. Calculus used. 3.0 hours discussion, 3.0 hours laboratory. CAN PHYS14.

PHYS 204W Physics Problem Session 1.0 Fa/Spr
Prerequisites: Concurrent enrollment in PHYS 204A.
Designed to supplement PHYS 204A with additional applications of introductory physics. Provides the student with the opportunity for additional assistance in developing problem-solving abilities. 2.0 hours activity. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 204Y Physics Problem Session 1.0 Fa/Spr
Prerequisites: PHYS 204A. Concurrent enrollment in PHYS 204B.
Designed to supplement PHYS 204B with additional applications of introductory physics. Provides the student with the opportunity for additional assistance in developing problem-solving abilities. 2.0 hours activity. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 204Z Physics Problem Session 1.0 Fa/Spr
Prerequisites: PHYS 204A. Concurrent enrollment in PHYS 204C.
Designed to supplement PHYS 204C with additional applications of introductory physics. Provides the student with the opportunity for additional assistance in developing problem-solving abilities. 2.0 hours activity. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 250 Computer-Assisted Physics Problem-Solving 3.0 Fall
Prerequisites: PHYS 204A, PHYS 204B. No previous computer experience necessary. This course prepares physics majors to be self-sufficient in personal computer use to solve experimental and theoretical physics problems. Topics include, but are not limited to, analysis of experimental data, projectile motion, random processes, vector fields and potentials, vibrating systems, and electric circuits. 2.0 hours discussion, 3.0 hours laboratory.

PHYS 300A Modern Physics I 3.0 Fall
Prerequisites: MATH 260, PHYS 204A, PHYS 204B, PHYS 204C, or PHYS 202A and PHYS 202B and calculus with faculty permission.
This course focuses on the radical changes in our concept of the physical world that emerged in the early 20th century. The course begins with the theory of special relativity, which altered our understanding of the nature of space, time, matter, and energy. The course’s middle section is devoted to the early experimental work that spurred the birth of the first quantum theories. The last section introduces the formal quantum dynamics of Schrödinger’s equation and applies it to several important physical cases.

PHYS 300B Modern Physics II 3.0 Spring
Prerequisites: PHYS 300A.
Application of quantum mechanics to atomic, nuclear, molecular, and solid state physics. Introduction to classical and quantum statistical mechanics. 2.0 hours discussion. 3.0 hours laboratory.

PHYS 301A Analytical Mechanics 3.0 Fall
Prerequisites: MATH 260, PHYS 204A, PHYS 204B, PHYS 204C.

PHYS 301B Analytical Mechanics 3.0 Spring
Prerequisites: PHYS 301A.
Many body systems, rotational motion, rigid body dynamics, Euler’s equations, Lagrange’s and Hamilton’s formulations, oscillating systems and waves.

PHYS 302A Electricity and Magnetism 3.0 Fall
Prerequisites: MATH 260, PHYS 204A, PHYS 204B, PHYS 204C.
Vector analysis; electrostatic fields and potentials; Poisson’s equation, boundary value problems and multipole expansions; dielectrics and magnetostatics.
PHYS 424 Nuclear Physics 3.0 Inquire
Prerequisites: PHYS 300B.
Nuclear forces, two-nucleon system, nuclear models, nuclear reactions, radioactive decay, nuclear spin, and magnetism.

PHYS 425 Solid State Physics 3.0 OddFa
Prerequisites: PHYS 204B, PHYS 204C.
Crystal structure, x-ray diffraction, constants of crystals, lattice vibrations, domains, free electron models, band theory of solids, semi-conductors, transistors, superconductivity, and dislocations.

PHYS 427 Advanced Laboratory 3.0 Fall
Prerequisites: PHYS 204B, PHYS 204C.
Experiments involving x-rays, radioactivity, Compton effect, photoelectric effect, velocity of light, lasers, nuclear magnetic resonance, electron spin resonance, Mössbauer effect, including data analysis by high speed computer. 2.0 hours discussion, 3.0 hours laboratory. This is a writing proficiency, WP, course; a grade of C– or better certifies writing proficiency for majors.

PHYS 433 Fiber Optics/Telecommunications 3.0 Spring
Prerequisites: PHYS 450 or PHYS 451.
Review light wave transmission in dielectric media; study the components of fiber optic communication; investigate analog and digital, and multiplexing techniques; examine the system performance criteria, measurements, and design. 2.0 hours discussion, 3.0 hours laboratory.

PHYS 435A Quantum Mechanics 3.0 Fall
Prerequisites: MATH 361, PHYS 300A.
Examine the system performance criteria, measurements, and design. 2.0 hours discussion, 3.0 hours laboratory.

PHYS 435B Quantum Mechanics 3.0 Spring
Prerequisites: PHYS 435A.
Operator methods, matrix mechanics, approximation methods, multielectron atoms, and scattering theory.

PHYS 450 Optics 3.0 Spring
Prerequisites: PHYS 204A, PHYS 204B, PHYS 204C.
Geometrical and physical optics, interference, diffraction, reflection, dispersion, resolution, polarization, fiber optics, laser optics, and holography. 2.0 hours discussion, 3.0 hours laboratory. This course is also offered as EECE 450.

PHYS 451 Lasers and Their Applications 3.0 Fall
Prerequisites: PHYS 204C. Recommended: PHYS 450.
The theory and mechanism of laser action, various types of lasers and their applications and future use. Laboratory involves measurements with lasers, fiber optics, data transmission, and holography. 2.0 hours discussion, 3.0 hours laboratory. This course is also offered as EECE 451.

PHYS 470 Electronic Physics 3.0 Inquire
Prerequisites: MATH 260, PHYS 204B.
Circuit review, solid state devices, charged particle dynamics, analog and digital integrated circuits, applications. 2.0 hours discussion, 3.0 hours laboratory.

PHYS 480 Theoretical Physics 3.0 Inquire
Prerequisites: MATH 260, PHYS 204A, PHYS 204B, PHYS 204C, faculty permission.
Advanced topics in theoretical physics appropriate to needs of students.

PHYS 489P Internship in Professional Physics 3.0 Fa/Spr
Prerequisites: PHYS 300B and faculty permission.
This is a supervised internship in professional physics. This internship may take place at a university, government laboratory, or private sector company. This course may be taken more than once. It cannot be used for the minor in physics. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading only.

PHYS 489T Internship in Physics Teaching 3.0 Fa/Spr
Prerequisites: PHYS 300B and faculty permission.
This is a supervised internship in physics teaching which will take place in a local high school physics classroom. This course may be taken more than once, but a maximum of 3 units of any PHYS 289 may be counted toward the degree. This course cannot be used for the minor in physics. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading only.

PHYS 491 Physics Seminar 1.0 Spring
Prerequisites: Upper-division standing in physics.
Presentation and discussion of reports based on current physics literature and/or special studies of students and faculty. You may take this course more than once for a maximum of 6.0 units.

PHYS 498 Special Topics 1.0–3.0 Inquire
Prerequisites: Upper-division standing in physics, faculty permission.
This course is for special topics offered for 1.0–3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See the Class Schedule for the specific topic being offered.

PHYS 499 Independent Study 1.0–3.0 Fa/Spr
This course is an independent study of special problems and is offered for 1.0–3.0 units. You must register directly with a supervising faculty member. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 489T Internship in Physics Teaching 3.0 Fa/Spr
Prerequisites: PHYS 300B and faculty permission.
This is a supervised internship in physics teaching which will take place in a local high school physics classroom. This course may be taken more than once. It cannot be used for the minor in physics. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading only.

PHYS 499 Independent Study 1.0–3.0 Fa/Spr
This course is a graduate-level independent study offered for 1.0–4.0 units. You must register directly with a supervising faculty member. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 699T Internship in Physics Teaching 1.0–3.0 Fa/Spr
This course is a supervised internship in physics teaching which will take place in a local high school physics classroom. This course may be taken more than once for a maximum of 15.0 units. Credit/no credit grading only.

PHYS 491 Physics Seminar 1.0 Spring
Prerequisites: Upper-division standing in physics.
Presentation and discussion of reports based on current physics literature and/or special studies of students and faculty. You may take this course more than once for a maximum of 6.0 units.

PHYS 498 Special Topics 1.0–3.0 Inquire
Prerequisites: Upper-division standing in physics, faculty permission.
This course is for special topics offered for 1.0–3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See the Class Schedule for the specific topic being offered.

PHYS 499 Independent Study 1.0–3.0 Fa/Spr
This course is an independent study of special problems and is offered for 1.0–3.0 units. You must register directly with a supervising faculty member. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 489T Internship in Physics Teaching 3.0 Fa/Spr
Prerequisites: PHYS 300B and faculty permission.
This is a supervised internship in physics teaching which will take place in a local high school physics classroom. This course may be taken more than once. It cannot be used for the minor in physics. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading only.

PHYS 499 Independent Study 1.0–3.0 Fa/Spr
This course is a graduate-level independent study offered for 1.0–4.0 units. You must register directly with a supervising faculty member. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 699T Internship in Physics Teaching 1.0–3.0 Fa/Spr
This course is a supervised internship in physics teaching which will take place in a local high school physics classroom. This course may be taken more than once for a maximum of 15.0 units. Credit/no credit grading only.

PHYS 491 Physics Seminar 1.0 Spring
Prerequisites: Upper-division standing in physics.
Presentation and discussion of reports based on current physics literature and/or special studies of students and faculty. You may take this course more than once for a maximum of 6.0 units.

PHYS 498 Special Topics 1.0–3.0 Inquire
Prerequisites: Upper-division standing in physics, faculty permission.
This course is for special topics offered for 1.0–3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See the Class Schedule for the specific topic being offered.

PHYS 499 Independent Study 1.0–3.0 Fa/Spr
This course is an independent study of special problems and is offered for 1.0–3.0 units. You must register directly with a supervising faculty member. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading only.

PHYS 489T Internship in Physics Teaching 3.0 Fa/Spr
Prerequisites: PHYS 300B and faculty permission.
This is a supervised internship in physics teaching which will take place in a local high school physics classroom. This course may be taken more than once. It cannot be used for the minor in physics. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading only.