Forensic Evaluation of Cracking in Panels Adjacent to Panel Replacements on Interstate 5 in WA State

Linda M. Pierce, PE, PhD
Applied Pavement Technology, Inc.
Jeff S. Uhlmeyer, PE
Washington State DOT

Jim Weston
Washington State DOT
Keith W. Anderson
Washington State DOT

National Conference on Preservation, Repair and Rehabilitation of Concrete Pavements
St. Louis Missouri
April 22-24, 2009
Outline

• Project background
• Panel replacement construction
• Pavement performance
• Distress investigation
• Summary and recommendations
Project Background

- Originally constructed in 1961
- 9” PCCP over 7” aggregate base
- Current Traffic Info
 - 64,000 ADT
 - 9% trucks
 - Annual design ESALs ~ 17 million
Project Background

• No major rehabilitation until 2003
• Pre rehabilitation conditions
 – Panel cracking
 – Faulting ½ to ¾ inch
• Major rehabilitation work
 – Dowel bar retrofit (~12,000 dowel bars)
 – Panel replacement (~ 20 panels per ln-mi)
 – Diamond grinding
Project Background

• Project duration
 – Began April 2003
 – Completed October 2003

• Panel replacements conducted during three or five day continuous (daytime) lane closures
Panel Replacement Construction
Construction Challenges

• Spalling and cracking of existing concrete during dowel bar drilling
• Contractor needed repeat reminders to properly set the grade
• New concrete mix placed too high
• Inconsistent concrete mix
Pavement Performance

• Mid November 2003
 – Presence of severe panel cracking in original concrete panels adjacent to panel replacements
 – Within 5 months, maintenance made emergency repairs to 6 panels
Distress Identification

• Inadequate application of bond breaker
Distress Identification

• Drilling operations
Distress Identification

• Relief cuts were not used
Distress Identification

- Relief cuts were not used
Distress Identification

- Construction equipment
Distress Identification

• MIT Scan results

<table>
<thead>
<tr>
<th>Specification</th>
<th>Percent Exceeding Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal (> ½ inch)</td>
<td>39.0</td>
</tr>
<tr>
<td>Vertical (> ½ inch)</td>
<td>16.0</td>
</tr>
<tr>
<td>Side Shift (> 1 inch)</td>
<td>19.0</td>
</tr>
<tr>
<td>Depth (> 1 inch)</td>
<td>3.7</td>
</tr>
</tbody>
</table>

– At this time, no apparent correlation between misaligned dowel bars and panel distress
Summary/Recommendations

• Possible contributors:
 – Panel demolition/excavation
 – Drilling operations
 – Construction equipment operating on panels supported with weak base or subgrade materials
 – Dowel bar misalignment
Summary/Recommendations

• Panel cracking is most likely due:
 – Use of guillotine pavement breaker
 – Lack of relief cuts

• Excessive forces were transmitted to adjacent panels during the breaking process
Summary/Recommendations

• Drilling Operations
 – Drill into sound concrete

• Panel Excavation Techniques
 – Confirm depth of saw cuts
 – Use full depth relief cuts

• Operation of construction equipment
 – Weak base and/or subgrade, restrict the use of construction equipment on grade
THANK YOU