California’s Perspective on Concrete Preservation

Dr. Shakir Shatnawi
Mr. Richard Stubstad
Dr. Mary Stroup-Gardiner
Introduction

- MTAG background
- Performance of:
 - Diamond grinding
 - Dowel bar retrofit
 - Full depth slab replacement with rapid set concrete (RSC)
Maintenance Technical Advisory Guide

- Vol. II – Rigid Pavements
- 1st Edition July 2006
- 2nd Edition March 2008
- Includes the following 8 chapters:
 - Introduction
 - Surface characteristics
 - Strategy selection
 - Joint resealing and crack sealing
 - Diamond grinding and grooving
 - Dowel bar retrofits
 - Isolated partial depth repair
 - Full depth repair including slab replacement
Diamond Grinding
Benefits

- Smoother pavement surfaces
- Longevity and life extension
- Better skid resistance [safety]
- Reduced noise levels at the tire-pavement interface
- Lower agency costs
- Lower user costs
Diamond Grinding
Smoothness and Longevity

Smoothness

- Average IRI of 29 projects in California:
 - 165 in/mi (2.61 m/km) before planned grinding
 - 93 in/mi (1.46 m/km) after grinding
- Before / after grinding ratio = 165.3 / 92.7 = 1.78
- Average treatment life of 17 years before grinding or any other rehab is needed
Regression Equation for All 29 Sections Studied in California

\[y = e^{0.0345x} \]

\[R^2 = 0.9189 \]

Increase in IRI as a ratio of initial IRI

Time after grinding, years

Predicted average longevity of diamond grinding = 17 years.
Diamond Grinding

Friction

Test Section

Longitudinal tining
New pavements

Friction Value

Before Grinding
After Grinding

1 2 3 4 5 6
Noise Measurement

- On-board sound intensity (OBSI)
- Measurements made very close to tire-pavement interface (~5"")
Diamond Grinding Noise Reduction

Before Grinding After Grinding

dBA

Test Section

1 2 3 4 5 6
Diamond Grinding
Agency and User Costs

- Smoother roads = lower user costs.
- Estimated fuel savings (alone, not counting repairs etc.): $25,000 per lane mile per year –
 - Based on 2002 fuel costs.
- Cost of diamond grinding: $30,000 per lane mile –
 - Also based on 2002 grinding costs.
- Fuel cost savings: $25,000 x up to 17 years =
 - ~ $200,000 - $400,000.
- Therefore potential net savings = at least $175,000 over expected life of treatment.
PAVEMENT SHOULD BE:

- Structurally sound
- Good load transfer
- Limited spalling
- No evidence of material problems, e.g.
 - ASR
 - D-cracking
 - Soft aggregates
DBR
Installation

- Restore load transfer
- Can be done in conjunction with diamond grinding
DBR
Performance

- 22,000 dowel bars placed 1999 on the:
 - I-10 freeway in Los Angeles County
 - @ 11 bars per joint.

- After 9 years:
 - Less than 2% with any signs of distress
DBR
Installation Problems

Backfill

Dowel Bar

PCC Pavement
DBR
Construction Considerations

- Performance related to construction:
 - Properly:
 - Clean slot — thoroughly!
 - Use gang saws
 - Align dowel bars — carefully!

- Consolidate grouting material
DBR
Project Selection

- Structural condition of slabs
 - Good or better

- Structural condition of the base
 - Low FWD deflections

- Measured load transfer efficiency
 - ≤ 60% as measured by FWD

- Magnitude of faulting
 - Between 0.10 and 0.50 inches

- Condition of joints and cracks
 - No more than moderate severity spalling
Full Depth Slab Repair

Slab Replacement

- Use when isolated slab distresses are too severe to warrant other treatments

- May be combined with diamond grinding
Materials selection

Based on project’s environmental, design, performance, and funding requirements

Rapid strength concrete (RSC) commonly used

After placement, traffic can be back on facility in 4 hrs or less for night construction.
Estimated Number of Distressed RSC Slabs on 15 California Statewide Projects

Total No. of Slabs Placed: 5430

Distressed Slabs: 1.4%

Shrinkage cracks were the most prevalent surface distresses in these slabs.
Further exploration needed to determine:

- Optimum timing of preservation treatments
 - Key threshold distresses and values
 - Remaining life information for treatment selection
- Structural integrity of cement bases
 - FWD testing, sometimes with destructive testing (cores), is often recommended
Questions?