Retrofit Dowel Bars In Jointed Concrete Pavement - Long Term Performance and Best Practices

Tom Burnham, P.E.
Bernard Izevbekhai, P.E.
Office of Materials and Road Research
Minnesota Department of Transportation

NATIONAL CONFERENCE ON PRESERVATION, REPAIR, AND REHABILITATION OF CONCRETE PAVEMENTS
St. Louis, Missouri – April 21-24, 2009
Outline

• Background
• Long Term Performance Case Studies
• Minnesota Best Practices
• Construction Issues and Rehabilitation
Background

• One of the major distresses in jointed concrete pavement is joint and or crack faulting
 – Traffic load/volume change (previously undoweled)
 – Excessive panel length (mid-panel cracks)
 – Dowel deterioration (not common)

• Retrofit dowel bars are a proven technique
 – Most research focused on quantity and spacing of bars

• Need to understand longer term performance with respect to backfill material in extreme climates
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota

- First retrofit dowel bar project in state - 1994
- Original 9” thick JRCP pavement constructed in 1984
 - 27 foot long panels, mesh reinforcement across mid-panel cracks
 - Virtually no faulting of mid-panel cracks (10 years old)
 - Transverse doweled contraction joints in good condition
 - HCADT = Approx 2100

- Project objective: To determine if retrofit dowel bars could prevent or slow down faulting of mid-panel cracks
 - No surface grinding necessary (no faulting yet)
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota

• **Design variables**
 - Backfill mortar type
 - Polymer-modified quickset patch (PMQP) material
 - Mn/DOT 3U18 patch mix
 - Saw and chip slotting method
 - Two dowel bar sizes
 - 1.5 inch dia. x 15 inch long
 - 1.5 inch dia. x 18 inch long
 - Various retrofit dowel bar placement patterns
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota

- **Observed Performance (14 years after retrofit)**
 - Faulting of mid-panel cracks minimal (avg = 1.7 mm)
 - Small number of distressed retrofit dowel bar slots caused by longitudinal cracking
 - Backfill material performance very good
 - PMQP had some loss of material near surface
 - Mn/DOT 3U18 patch mix good despite early shrinkage cracking around slots
 - LTE (2006)
 - 60 to 80 percent
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota

13 years old

Longitudinal panel crack
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota

13 years old

Mn/DOT 3U18

PMPQ
Long Term Performance Case Studies

TH 52, Zumbrota, Minnesota

13 years old

Faulted mid-panel crack
Long Term Performance Case Studies

TH 12, Willmar, Minnesota

- Retrofit in 1996
- Original 8” thick JPCP pavement constructed in 1981
 - 15 foot long panels, undoweled transverse joints
 - Substantial faulting in outside wheel tracks (15 years old)
 - Wide joint openings (up to 1.25 inch)
 - HCADT = Approx 600

- **Project objective:** To determine if retrofit dowel bars and surface grinding could extend service life
Long Term Performance Case Studies

TH 12, Willmar, Minnesota

• Design variables
 ▪ Backfill mortar type
 – Mn/DOT 3U18 patch mix
 ▪ Slots established using milling machine
 ▪ Dowel bar size
 – 1.5 inch dia. x 18 inch long
 ▪ Two retrofit dowel bar placement patterns
Long Term Performance Case Studies

TH 12, Willmar, Minnesota

![Diagram showing Taper Sections and Typical sections with traffic directions.]
Long Term Performance Case Studies

TH 12, Willmar, Minnesota

• Observed Performance (12 years after retrofit)
 ▪ Faulting of transverse joints minimal (avg = 1.5 mm)
 ▪ Backfill material performance good
 – Minor surface distress in slots near joint
 – May be linked to milling process
 ▪ LTE (2006)
 – 51 to 65 percent
Long Term Performance Case Studies

TH 12, Willmar, Minnesota

12 years old

Backfill mortar distress near joint
Long Term Performance Case Studies

TH 23, Mora, Minnesota

• Retrofit in 1998
• Original 9-7-9” thick JPCP pavement constructed in 1952
 ▪ 16 foot long panels, undoweled transverse joints
 ▪ Substantial faulting in outside wheel tracks (46 years old)
 ▪ Wide joint openings (no aggregate interlock)
 ▪ HCADT = Approx 500

• Project objective: To determine if retrofit dowel bars and surface grinding could extend service life of a very old pavement
Long Term Performance Case Studies

TH 23, Mora, Minnesota

- **Design variables**
 - Backfill mortar types
 - Rapid Set Mortar (RSM)
 - Mn/DOT 3U18 patch mix
 - Saw and chip slotting method
 - Two dowel bar size
 - 1.5 inch dia. x 15 inch long
 - 1.5 inch dia. x 13 inch long
 - Various retrofit dowel bar placement patterns
Long Term Performance Case Studies

TH 23, Mora, Minnesota

<table>
<thead>
<tr>
<th>Section 1a</th>
<th>Section 1b & d</th>
<th>Section 1c</th>
<th>Section 2</th>
<th>Section 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>12”</td>
<td>12”</td>
<td>12”</td>
<td>12”</td>
<td>12”</td>
</tr>
</tbody>
</table>

Traffic Directions:
- **Left Traffic:** Section 1a to Section 1c
- **Right Traffic:** Section 1b & d to Section 1c
Long Term Performance Case Studies

TH 23, Mora, Minnesota

- **Observed Performance (10 years after retrofit)**
 - Faulting of transverse joints minimal (avg = 0.5 mm)
 - Backfill material performance very good
 - LTE (2006)
 - 64 to 80 percent
Long Term Performance Case Studies

TH 23, Mora, Minnesota

8 years old

Mn/DOT 3U18 backfill mortar
Long Term Performance Case Studies

I-90, Beaver Creek, Minnesota

• Retrofit in 1999
• Original 9” thick JRCP pavement constructed in 1984
 ▪ 27 foot long panels, mesh reinforcement across mid-panel cracks
 ▪ Significant faulting of mid-panel cracks (15 years old)
 ▪ Transverse doweled contraction joints in good condition
 ▪ HCADT = Approx 1200

• Project objective: To determine if retrofit dowel bars and surface grinding could restore ride quality and slow down redevelopment of mid-panel crack faulting
Long Term Performance Case Studies

I-90, Beaver Creek, Minnesota

- **Design variables**
 - Backfill mortar type
 - PMPQ patch mix
 - Saw and chip slotting method
 - Dowel bar size
 - 1.5 inch dia. x 15 inch long
 - Two retrofit dowel bar placement patterns
Long Term Performance Case Studies

I-90, Beaver Creek, Minnesota

- **Observed Performance (9 years after retrofit)**
 - Faulting of mid-panel cracks minimal (avg = 0.3 mm)
 - Backfill material performance very good
 - Some slot distresses caused by transverse and longitudinal panel cracking after retrofit installation
 - LTE (2006)
 - 70 to 89 percent
Long Term Performance Case Studies

• Summary
 ▪ Retrofit dowel bar applications:
 – Prevention of faulted mid-panel cracks
 – Structural capacity improvement
 – Extension of service life (for very old pavement)
 – Restoration of ride quality
Conclusions

- Effective in preventing faulting of mid-panel cracks
- Effective in extending service life of previously undoweled joints
- Surface grinding critical to performance of retrofit dowel bars
- Fairly insensitive to various dowel patterns and bar length
- Good performance from most backfill materials
- Milling not recommended for slot formation
Minnesota Best Practices

• Development issues
 ▪ Economical construction
 ▪ Long-term durability in extreme climate

• Slot formation
 ▪ Saw and Chip recommended
 ▪ Milling quicker, but long-term performance not as good

• Dowel bar length
 ▪ 1.25 inch dia x 15 inch long recommended
 ▪ Minne-ALF testing demonstrated that bar lengths down to 13 inches perform satisfactorily (= shorter slots)
Minnesota Best Practices

- **Dowel bar placement**
 - Faulting near outer wheelpath
 - 3 dowels outer wheel track
 - Faulting across entire joint/crack
 - 3 dowels outer wheel track, 2 dowels inside wheel track
 - Adjust for traffic volume (example: passing lane)
 - 2 dowels outer wheel track, 2 dowels inside wheel track
 - Center groups of bars within wheel track (12 inches on center)
 - Install so embedment length is equal across joint or mid-panel crack

Note: Two dowels in a wheel track are as efficient as three, however joint deflections increase (Minne-ALF results)
Minnesota Best Practices

- Dowel bar design

Shallower cover has been found to work successfully (Minne-ALF)
Minnesota Best Practices
Minnesota Best Practices

• Construction Method

 ▪ Mn/DOT requires contractor to construct a small test section
 – 24 retrofit dowels in test area
 – 24 hours after retrofit installation, three 6 inch diameter cores taken and inspected
 • Continuity at dowel/concrete interface and consolidation beneath dowel
 • Check that dowel supports do not collapse
 • Check bond between backfill mortar and slab
 – Paid for at unit price
Construction Issues

Honeycombing of backfill mortar ➤ Switched mortar type
Rehabilitation of Retrofit

Age = Approximately 5 years
Rehabilitation of Retrofit

Lakeland Rest Area

Age = Approximately 5 years
Thank you

QUESTIONS?