

I-15 Ontario PCC Rehabilitation Project

CPTP Conference

April 24, 2009

Jonathan den Hartog / Caltrans E.B. Lee / UC Berkeley David Lim / Caltrans David Thomas / Parsons

I-15 Ontario Rehabilitation Project: D8

Damaged asphalt pavement on shoulder

Variety of Rehabilitation Techniques

- Concrete Materials and Mixes
 - Normal PCC
 - RSC (12-h curing-time mix)
 - FSHCC (4-h curing-time mix)
 - Precast (SuperSlab, FHWA HfL Grant)
- Closure and Detours
 - Detour on widened median (no lane closures)
 - Weekend closures: Connector areas
 - Nighttime partial closures: FSHCC (south area)
- Construction Approaches: Combination
 - Continuous-lane Reconstruction
 - Random-slab Replacement

PCC Cross-Section

Rapid Strength Concrete

345mm

AC Base

150mm

* STA 32+50.000 TO STA 33+02.725

SOUTHBOUND

ROUTE 15

NORTHBOUND

Project Objectives and Approach

- Rehabilitate pavement with long-lasting concrete (various materials & approaches)
 - Caltrans LLPRS project (30+ years)
- Minimize disruption to traffic and surrounding businesses
- Performed a detailed analysis of various alternatives, from both a RUC (delay) and Agency cost perspective
- Model (network-simulation) the construction staging to evaluate the traffic impacts
 - Mesoscopic network analysis
 - Include analysis of local arterials

Tool: CA4PRS (FHWA-Technology)

Construction Analysis for Pavement Rehabilitation Strategies

State DOTs: FHWA Free-license

More Information Exhibit & Brochure

Staging Alternatives Compared

ID	Scenario	Construction Window	Closure Scheme		
1	Original	55-hour Weekend + Weekdays	Median + Structure Widening		
2	VA By-pass	55-hour Weekend	Split Detour		
3	Rapid Rehab 1	55-hour Weekend	Full closure One roadbed		
4	Rapid Rehab 2	Progressive Continuous	Full closure One roadbed		
5	Traditional	8-hour Nighttime	Partial closure		
6-1	Long-life CSOL	55-hour Weekend	Full closure One roadbed		
6-2	Traditional AC Overlay	8-hour Nighttime	Partial closure		

Alt 1: VA-study Original (Detour on Widened Median)

Traffic Roadbed (SB)

Alt 3,4: Rapid-Rehab Concept

55-hour Weekend / Continuous Full-closure

Alt 6-1, 6-2: CSOL (AC Overlay)

6-1: Long-life, 6-2: Traditional

Construction Roadbed (NB)

Crack-Seat AC Overlay (CSOL) including shoulders

CA4PRS

PCCP Deterministic - I-15 72-H (DEMONSTRATION)	
Project Identifier: I-15 72-H (DEMONSTRATION)	
Project Details Scheduling Resource Profile Analysis	
Mobilization Mobilization (Hours): 4.0	Construction Start Date: 3 / 1 /2004
Demobilization (Hours):	Construction Window
Lag Times for Sequential Working Method	Lag Times for Concurrent Working Method
Demolition to New Base 2.0 Installation (Hours):	Demolition to PCCP Installtion 5.0 (Hours):
PCCP Installation can begin before New Base Installation is Complete:	Demolition to New Base 9.0 Installation (Hours):
New Base Installation to PCCP Installation (Hours): 4.0	New Base Installation to PCCP 6.0 Installation (Hours):
·	
<u>S</u> ave	<u>C</u> lose

CA4PRS

CA4PRS

Schedule-Traffic Cost Comparison

CA4PRS Analysis Summary

Scenario		Closure Duration	Traffic*		Cost (\$millions)		
			RUC (\$M)	Delay (min)	Agency	Total**	Cost Ratio
1	VA Original Median-Detour	35 weekends	3	16	78	79	100%
3	PCC 55-hour Weekend	35 weekends	119	363	83	123	156%
4	Progressive Continuous	8 weeks	123	363	77	118	149%
5	Traditional Nighttime	1,220 nights	133	22	88	133	168%
6	CSOL 55-hour weekend	20 weekends	69	363	60	83	105%

^{*} With 30% demand reduction except nighttime (10%)

Project Update (On-going)

- Bid Opened: December 11, 2008
 - Contractor: Security Paving Company
 - -Low Bid: \$52M
 - Engineer's estimate: \$68M
- Construction Schedule: 2009-2010
 - -Widening: Apr 2009 to Jan 2010
 - -SB Rehab: Feb 2010 to Apr 2010
 - NB Rehab: May 2010 to Oct 2010
 - -Precast: Jun, Jul 2010
 - Project Completion: Nov 2010

Construction-Staging Plans

- Pave the median and bridge-structures
- Shift SB traffic two lanes over into the median.
- Rehab outside lanes on weekdays
- Rehab ramps, connectors, weaving areas on 55hour weekend closures
- Repeat for NB side
- Construction-Staging Traffic Analysis
 - Complicated process: 26 Stages
 - Up to 32 weekend closures
 - Too costly and time-consuming to analyze all
 - Choose ones with highest potential impact

Mesoscopic Simulation: DynamEq

- Mesoscopic Network Simulation
 - Equilibrium-based Mesoscopic Model
 - Useful for very large-scale applications
 - More detail than macroscopic
 - Less work to set up than microscopic
 - Base model from SCAG
 - Count data and 67 Traffic signals
 - Lane-level geometry
 - Intensive calibration process
- Objectives: TMP Implementation
 - Plan/revise detours
 - Identify 'problem' intersections
 - Improve with signal timing and COZEEP
 - Compare results with observe: Construction

