Walk & Roll Bot
Capstone Design Project 2013-14
Introduction

- Project: Motorized Omnidirectional Standing Wheel Chair
- Sponsor: Walk & Roll Foundation, Dale Rogers
- Team:

<table>
<thead>
<tr>
<th>Sean Dobbins</th>
<th>James Egelston</th>
<th>Wyatt Harris</th>
<th>Alex Kensil</th>
<th>Cory Rantanen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECA</td>
<td>MECH</td>
<td>MECA</td>
<td>MECH</td>
<td>MECH</td>
</tr>
</tbody>
</table>

- Faculty Advisor: Daisuke Aoyagi
Project Background

Walk & Roll Foundation
- Founded by Jon and Chelsie Hill in 2011
- Walk & Roll Bot
 - Brainchild of Dale Rogers

Customer Needs & Project Goals
- Omnidirectional
- Standing
- Affordable
- Expandable in future
- Eventually for consumers
- Useful for Team HotWheelz
- “Wow” Factor
Sponsor Requirements

Must Do:
- Omnidirectional mobility in both seated and standing positions
- Comfortably raise and support riders in standing position
- Navigate through a doorway and be able to spin inside of an average domestic hallway
- Ascend handicap ramps
- Lightweight to accommodate transport in the back of vehicle
- "Tip-over" monitoring
- Failsafe "Standing Mode" (Mechanical Bypass)
- Affordable
- Aesthetically pleasing

Should Do:
- Allow wireless control for remote operation
- Proportional speed control
- Arm Rests that fold out of way
- Floor sensing rangefinder
- On Board Battery Charger
- Adjustable standing time
- “Learning” and playback for wheelchair movements***

Would be Nice:
- iPhone App
- Suspension
- Self Docking Charging Station
Engineering Specifications

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Metric</th>
<th>Method</th>
<th>Target</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must Do</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Height</td>
<td>Inches</td>
<td>Tape measure</td>
<td>< 80"</td>
<td>Standing position</td>
</tr>
<tr>
<td>Max Width</td>
<td>Inches</td>
<td>Tape measure</td>
<td>< 25"</td>
<td>-</td>
</tr>
<tr>
<td>Rider Height</td>
<td>Inches</td>
<td>Tape measure</td>
<td>5'2" - 5'10"</td>
<td>-</td>
</tr>
<tr>
<td>Rider Capacity (Max)</td>
<td>Lbs</td>
<td>Scale</td>
<td>< 200 lbs</td>
<td>-</td>
</tr>
<tr>
<td>Total Weight</td>
<td>Lbs</td>
<td>Scale</td>
<td>< 150 lbs</td>
<td>Fully assembled</td>
</tr>
<tr>
<td>Modular weight</td>
<td>Lbs</td>
<td>Scale</td>
<td>< 50 lbs</td>
<td>Individual Components</td>
</tr>
<tr>
<td>Ascend incline</td>
<td>Degrees</td>
<td>Inclinometer</td>
<td>> 1:12 (5° incline)</td>
<td>With rider in seated position</td>
</tr>
<tr>
<td>Run time</td>
<td>Hours/Min</td>
<td>Stopwatch</td>
<td>> 6 hours</td>
<td>With rider/max draw</td>
</tr>
<tr>
<td>Omnidirectional Travel</td>
<td>Degrees</td>
<td>Floor test</td>
<td>16 unique vectors</td>
<td>Flat floor</td>
</tr>
<tr>
<td>Zero-point Turn</td>
<td>Inches</td>
<td>Tape measure</td>
<td>+/- 1”</td>
<td>Smooth/flat floor</td>
</tr>
<tr>
<td>Final Costs</td>
<td>US Dollars</td>
<td>Total cost of Unit</td>
<td>< $3000</td>
<td>Manufacturing/Assembly</td>
</tr>
</tbody>
</table>

Should Do				
Step climb/Clearance	Inches	Tape Measure	0.75"	With Rider
Time to Stand	Seconds	Stopwatch	30 s +/- 5 s	“
Max. Seated speed	Mph	Tape measure/Stopwatch	5-6 mph	“
Max. Standing speed	Mph	Tape measure/Stopwatch	2-3 mph	“
Design Changes

- **Mechanical:**
 - Base
 - Structural webbing between plates
 - Lower profile modular base link
 - Larger omni-wheels
 - Double rear omni-wheel
 - Belt driven

- **Electrical:**
 - Microcontroller
 - From parallax to arduino
 - Batteries
 - 55 Ah to 15 Ah
Design Solution

- Omnidirectional Movement
- Standing Mechanism
 - Linear Actuator
 - COG shift foot plate accomplished by cantilever
- Lightweight spec drove material decisions (aluminum/carbon)
- Modularity achieved by 3 removable portions
 - Base
 - Chair
 - Battery
Fabrication

- **Purchased:**
 - Pacific Water Jet
 - Lift-arm components
 - Transfer Flow (FREE!)
 - Omni-base plate
- **In-House:**
 - Modular Base Link
 - Bushings
 - Spacers
 - Hubs
 - Tie Rods
 - Tapping
 - Bead-Blasting
 - Welding
Testing

- Steel omni-base proof-of-concept
 - Validation of omni-wheel geometry
 - Validation of rider ergonomics
- Code test platform
- Final performance testing pending
Final Budget

- Material
 - ~$250
- Purchased Parts:
 - $2,300
- Tooling
 - ~$300
- Labor:
 - 800 hours total
 - Estimated @ $41.31/hr = $33,048

Total w/ Labor: $35,898 Total w/o Labor: $2,850
Reflection

- Problems:
 - Omni-wheel Sourcing
 - Aluminum Warping
 - Fasteners
 - Fabricators
 - Vendors
 - Machine Time
 - Composites
 - Motor Drivers
 - Wireless Capabilities

- Solutions Achieved:
 - In-house manufacturing
 - Exchanging Parts
 - Remaking Parts
 - Modifying Parts
 - Negotiating
 - Waiting
Reflection (cont.)

- Merits of the Design Solution
 - Pretty
 - Lightweight
 - Robust
 - Cheaper than thought possible
Conclusion

- Overall:
 - Project specifications became overwhelming with given time span and complications
 - Great design experience
 - Great manufacturing experience

- Time is the enemy
- Be wary of trusting small-time fabrication shops