Mechatronic Engineering

Program Improvement Plan

Edition 5

Prepared by

Chuen H. Hsu

Professor and Program Assessment Coordinator

May 18, 2016

Department of Mechanical and Mechatronic Engineering and Sustainable Manufacturing

California State University, Chico
CONTENTS

1. Introduction
 1.1 Purpose of this Document ... 3
 1.2 Program Improvement Coordinator .. 3
 1.3 Assessment Cycle Timetable ... 3

2. Program Mission and Vision
 2.1 Statement of Program Mission .. 6
 2.2 Statement of Program Vision ... 6

3. Program Educational Objectives
 3.1 Statement of Program Educational Objectives 6
 3.2 Process to Achieve Program Educational Objectives 7
 3.3 Review of Program Educational Objectives 7
 3.4 Assessment of Achievement of Program Educational Objectives 9

4. Program Outcomes
 4.1 Statement of Program Outcomes ... 9
 4.2 Process to Achieve Program Outcomes ... 9
 4.3 Assessment of Achievement of Program Outcomes 13
 4.4 Summary of Senior Survey .. 18

5. Program Improvement
 5.1 Annual Program Improvement Report ... 18
 5.2 Process to Use Results of Assessment to Improve the Program 18

Appendices
 A. Mechatronic Engineering Program Outcome Record Sheet 19
 B. Graduating Senior Survey Instrument .. 22
 C. Alumni Survey Instrument ... 28
1. **INTRODUCTION**

1.1 **Purpose of this Document**

The purpose of this document is to outline a process for continuous assessment and improvement of the Mechatronic Engineering Program. It is the primary repository of the Mechatronic Engineering Program Mission and Vision Statements, Program Educational Objectives, and Program Outcomes. The process for achieving the Program Outcomes, procedures for assessing achievement of those Outcomes, and methods for maintaining and improving all the aforementioned are included. The implementation of these procedures will likely result in regular revision of this document.

1.2 **Program Improvement Coordinator**

The Department Chair, or his designee, is responsible for administering this plan as well as maintaining this document.

1.3 **Assessment Cycle Timetable**

Each academic year, a series of activities will be executed which are intended to lead to improvement in the Mechatronic Engineering Program. Figure 1 describes the process and Figure 2 shows the timeline for assessment and program improvement. Table I summarizes when these activities will occur. More details are contained in subsequent sections.
Figure 1: Program improvement process

Figure 2: Timeline for the program improvement cycle
Table I: Timetable for Program Improvement Activities

Fall Semester

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Responsible Party</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Thursday prior to first day of classes</td>
<td>Program Improvement Coordinator</td>
<td>Remind instructors of courses in which Program Outcomes are to be assessed in the fall semester Review Program Improvement Plan</td>
</tr>
<tr>
<td>2 September 30</td>
<td>Program Improvement Coordinator</td>
<td>Submit Annual Program Improvement Report to Dean</td>
</tr>
<tr>
<td>3 October 31</td>
<td>Department Faculty</td>
<td>Faculty meets to review Annual Program Improvement Report and plan consequent actions to improve the program</td>
</tr>
<tr>
<td>4 University SET deadline (required)</td>
<td>Instructors</td>
<td>Conduct in-class paper SET or remind students to complete on-line SET</td>
</tr>
<tr>
<td>5 Deadline for submitting course grades</td>
<td>Instructors for courses in which Program Outcomes are assessed</td>
<td>Submit to Program Improvement Coordinator an Outcome Assessment Record Sheet for each Program Outcome measured in course</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Responsible Party</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Thursday prior to first day of classes</td>
<td>Program Improvement Coordinator</td>
<td>Remind instructors of courses in which Program Outcomes are to be assessed in the spring semester to review Program Improvement Plan</td>
</tr>
<tr>
<td>2 University SET deadline (required)</td>
<td>Instructors</td>
<td>Conduct in-class paper SET or remind students to complete on-line SET</td>
</tr>
<tr>
<td>3 Graduating Senior Survey deadline</td>
<td>Instructor(s) for MECA 440B</td>
<td>Remind students in MECA 440B to complete online Graduating Senior Survey</td>
</tr>
<tr>
<td>4 Deadline for submitting course grades</td>
<td>Instructors in courses in which Program Outcomes are assessed</td>
<td>Submit to Program Improvement Coordinator an Outcome Assessment Report Sheet for each Program Outcome measured in course</td>
</tr>
</tbody>
</table>

Summer Break

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Responsible Party</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 7 days prior to fall classes</td>
<td>Dean</td>
<td>Prepares Graduating Senior Survey Summary Report</td>
</tr>
<tr>
<td>2 7 days prior to fall classes</td>
<td>Program Improvement Coordinator</td>
<td>Prepares Annual Program Improvement Report</td>
</tr>
<tr>
<td>3 7 days prior to fall classes</td>
<td>Department Chair</td>
<td>Prepares Summary of Comments on Graduating Senior Survey and Summary of Alumni Survey</td>
</tr>
</tbody>
</table>
2. **Program Mission and Vision**

2.1 Statement of Program Mission

An entity’s mission and vision should govern its plan for continuous improvement. The mission statement for the Mechatronic Engineering Program as printed in the University Catalog (http://catalog.csuchico.edu/viewer/15/ENGR/MECANONEBS.html) and included on the Program’s website (http://www.csuchico.edu/mmem/programs/bs_mechatronic_engineering/index.shtml) follows.

The Mechatronic Engineering Program has the primary mission of providing students a high-quality undergraduate education with

1. A curriculum that is firmly grounded in engineering fundamentals
2. A faculty that provides superior teaching and mentoring both in and out of the classroom
3. A faculty whose focus is undergraduate education
4. Class sizes that encourage student participation
5. Project experiences that build on fundamentals and develop team skills
6. Facilities and equipment that are readily accessible
7. An environment that is conducive to learning and encourages students from different genders and backgrounds

The faculty is committed to offer a broad undergraduate experience that will promote professional growth and prepare students for a variety of engineering careers, graduate studies, and continuing education.

2.2 Statement of Program Vision

The CSU, Chico Mechatronic Engineering Program is committed to providing a superior undergraduate learning experience that is the first choice among CSU bound engineering students.

3. **Program Educational Objectives**

3.1 Statement of Program Educational Objectives

The Mechatronic Engineering Program’s Educational Objectives are goals for its graduates to achieve a few years after graduation. Mechatronic engineering graduates will:

1. Practice in engineering-related fields chosen from a broad range of industries
2. Recognize the need and have the ability to engage in continuing learning to adapt to evolving professions and to advance professionally
3. Become contributing members of the society with an understanding of the inherent and unavoidable impact of practicing engineering

The above Program Educational Objectives are printed on the Program’s website (http://www.csuchico.edu/mmem/programs/bs_mechatronic_engineering/educational_objectives.shtml).

3.2 Process to Achieve Program Educational Objectives

Since the Educational Objectives are goals which alumni should accomplish within the first few years of professional practice, achievement of those objectives may require experience attained after leaving CSUC. The curriculum is structured to achieve the Program Outcomes described in Section 4. If these outcomes are appropriate and are achieved by all graduates, and all graduates then enter appropriate professional practice, the Program Educational Objectives could be satisfied.

Thus, while it is expected that all alumni will meet the Program Educational Objectives, this cannot be assured. Table II graphically shows the relation between Outcomes and Objectives and how achievement of the Program Outcomes supports achievement of the Program Educational Objectives. Note that achievement of some Program Outcomes results in realization of a major portion of some Program Educational Objectives. In Table II these are labeled “strong support”. Other Program Outcomes are more modest in their support and are so indicated.

3.3 Review of Program Educational Objectives

When resources are available, representatives of the Mechatronic Engineering faculty will visit industrial sites with the purpose of meeting with appropriate company representatives to obtain feedback on the Mechatronic Engineering Program. Each site visit will be to a different company which employs Program graduates. The specific objectives of these meetings will be to:

1. Review the appropriateness of the Program Educational Objectives
2. Determine the knowledge and skills the company would like its new engineering hires to possess
3. Make suggestions for changes in the mechatronic engineering curriculum to better align it with the company’s needs
4. Provide insight regarding achievement of the Program Educational Objectives by the company’s employees who are graduates of the Mechatronic Engineering Program
<table>
<thead>
<tr>
<th>Mechatronic Engineering Program Educational Objectives</th>
<th>Program Outcomes by Support of Program Educational Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechatronic engineering graduates will:</td>
<td>Table II</td>
</tr>
<tr>
<td>1. Practice in engineering-related fields chosen from a broad range of industries</td>
<td>Strong support</td>
</tr>
<tr>
<td>2. Recognize the need and have the ability to adapt to evolving professions and to advance professionally</td>
<td>Modest support</td>
</tr>
<tr>
<td>3. Become contributing members of the society with an understanding of the inherent and unavoidable impact of practicing engineering on society</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Assessment of Achievement of Program Educational Objectives

The PEOs will be assessed every three years involving program constituencies. Besides students and faculty readily available within the program, additional resources include alumni, employers, and industrial advisory board.

The observations of alumni by the company representatives described in Section 3.3 provide evidence of achievement of Program Objectives. In addition, annually alumni who graduated three and six years earlier will be surveyed to assess their impressions of achievement of the Educational Objectives. Appendix C includes a sample survey instrument containing questions that generate useful data for the assessment.

4. PROGRAM OUTCOMES

4.1 Statement of Program Outcomes

Mechatronic Engineering Program graduates must have:

a. An ability to apply knowledge of mathematics, science, and engineering
b1. An ability to design experiments to evaluate the performance of a mechatronic system or component with respect to specifications
b2. An ability to conduct experiments, as well as analyze and interpret data
c. An ability to design a mechatronic system, component, or process to meet desired needs within realistic constraints
d. An ability to function effectively as members of multidisciplinary teams
e1. An ability to define engineering problems
e2. An ability to solve engineering problems
f. An understanding of professional ethical responsibility
g1. An ability to communicate technical matters effectively in oral form
g2. An ability to communicate technical matters effectively in written form
g3. An ability to communicate technical matters effectively in graphical form
h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
i. A recognition of the need for, and an ability to engage in, life-long learning
j. A knowledge of contemporary issues
k. An ability to use the techniques, skills, and modern mechatronic engineering tools necessary for engineering practice

The Program Outcomes are included on the Department’s website (http://www.csuchico.edu/mmem/programs/bs_mechatronic_engineering/program_outcomes.shtml).

4.2 Process to Achieve Program Outcomes

The principal means for attaining the Program Outcomes is the formal, required portion of the Program, i.e., the required courses. This is the only element of the Program to which all students are exposed that significantly develops competencies embodied in the Program Outcomes. The required courses which contribute to attainment of the Program Outcomes are listed in Table III.
Mechatronic Engineering Program Outcomes

Table III

Courses Which Contribute to Attainment of Program Outcomes

<table>
<thead>
<tr>
<th>Courses</th>
<th>Major contribution</th>
<th>Minor contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MATH 120, 121, 260 – Calculus, Diff Eq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. CHEM 111 – General Chemistry *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PHYS 204A,B,C – Physics *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CIVL 211 – Statics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. CIVL 302 – Engr Econ and Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. CIVL 311 – Strength of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. CIVL 495 – Professional Issues in Engr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. CSCI 111 – Program and Algorithms I*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. EECE 144 – Logic Design Fundam*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. EECE 211 – Linear Circuits I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. EECE 211L – Linear Circuits Activity *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. EECE 311 – Linear Circuits II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. EECE 315 – Electronics I *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. EECE 337 – Embedded Systems Develop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. EECE 344 – Digital Systems Design *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. SMFG 160 – Manufacturing Processes *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. MECA 140 – Intro Engr Design & Auto*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. MECA 380 – Measurement/Instrument *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. MECA 440A – Mechatronic Design Proj I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. MECA 440B – Mechatronic Design Proj II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. MECA 482 – Control System Design *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. MECA 486 – Motion/Mach Automation *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. MECA 100/100L – Graphics I *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. MECH 210 – Materials Science/Engr *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. MECH 320 – Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. MECH 340 – Mechanical Engr Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. General Education courses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Includes laboratory or activity
The curriculum has been structured to produce the Program Outcomes. Most of the courses in the curriculum teach the students math, science, and mechatronic engineering topics which empower them to apply that knowledge (Program Outcome a).

Selected courses teach students to design experiments (Program Outcome b₁) and conduct experiments and analyze and interpret the resultant data (Program Outcome b₂). These include the lab portions of the courses indicated on Table III. These experiences in experimentation culminate in MECA 440B (the second course of the capstone design sequence) in which students must design tests, perform the tests, and analyze the data collected to verify that their designs satisfy the problem specifications.

The primary courses which lead to Program Outcome c, “an ability to design a mechatronic system, component, or process to meet desired needs within realistic constraints”, are EECE 344, MECH 340, MECA 440A, and MECA 440B.

Training in team skills to attain Program Outcome d is a major part of the capstone design project; however, the teams which are formed in these classes are not multi-disciplinary. A multi-disciplinary team project occurs in CIVL 495 (Professional Issues in Engineering) where a team of students from various engineering disciplines (civil, computer, electrical, mechanical, and mechatronic engineering) do a feasibility study.

Defining engineering problems (Outcome e₁) begins by example in many engineering analysis courses, and is strongly emphasized in the capstone design course MECA 440A. Solving engineering problems (Outcome e₂) is demonstrated in many engineering analysis courses and driven home in MECH 340, MECA 440A, and MECH 440B.

The foundations of ethics are introduced to some students in some general education courses. All students are exposed to professional ethical responsibilities in CIVL 495 where they gain an understanding of these responsibilities (Program Outcome f).

The communication skills in Program Outcomes g₁ and g₂ are taught in general education courses as well as courses in the major. The foundation for oral and written communication skills are set down in the required general education oral communication (CMST 131 or CMST 132) and writing (ENGL 130) courses. Each of the remaining general education courses are required to have a writing component to refine the students’ skills. In some engineering courses, writing is also required, culminating with major design reports in the capstone design project in MECA 440A and MECA 440B. Graphical communication skills (Program Outcome g₃) are taught in MECH 100 and MECH 100L and bolstered in MECH 340 and the capstone design project.
Program Outcomes h and j are in large part dealt with in the general education portion of the curriculum. In the major requirements, CIVL 495 (Professional Issues in Engineering) treats some of these issues.

The importance of continued learning (Program Outcome i) is apparent to students in MECH 340 where design projects require them to find information not discussed in class or in the textbook. The capstone design project (MECA 440 A and B) almost always requires more information than students obtained in their preceding classes. This topic is discussed more formally in CIVL 495.

In support of Program Outcome k, the following Mechatronic engineering tools are taught.

- **Computer-Aid Drafting**
 - SolidWorks®
 - MECH 100L, MECH 200

- **Equation Solvers**
 - TK Solver®
 - MECH 340
 - MatLab®
 - EECE 311, MECA 482
 - Simulink®
 - MECA 482

- **Languages**
 - Assembly
 - EECE 337
 - BASIC
 - MECA 380
 - C
 - EECE 337

- **System Design and Development**
 - LogicWorks™
 - EECE 144
 - PSpice®
 - EECE 311
 - PLD Development
 - EECE 344

- **Instrument Control**
 - LabVIEW®
 - MECA 380

Some students participate in extracurricular student organizations and competitions, and these activities contribute to attainment of some Program Outcomes. The following student organizations sponsor guest speakers, field trips, service projects, and/or attendance at regional parent organization meetings, workshops, and/or conferences.

- American Institute of Mechatronic Engineers Club
- American Society of Mechanical Engineers (ASME) Student Chapter
- Institute of Electrical and Electronic Engineers (IEEE) Student Chapter
- Tau Beta Pi Engineering Honor Society Student Chapter
For the students who participate, these activities contribute to the attainment of Program Outcomes e₂, f, g₁, g₂, g₃, h, i, and j.

Participation in the following competitions contributes to attainment of Program Outcomes a, c, d, e₂, g₁, g₂, g₃, and i.

- ASME Human Powered Vehicle Challenge
- Formula SAE Competition
- IEEE Micromouse Competition
- Intelligent Ground Vehicle Competition
- SAE Baja® Competition

Finally, the university experience itself contributes to attainment of Program Outcomes d, f, g₁, h, i, and j in a variety of ad hoc ways such as attendance at campus public events (e.g., plays, concerts, speakers), contact with faculty outside of class, and through living situations (e.g., dorms, and communal renting of apartments and houses).

4.3 Assessment of Achievement of Program Outcomes

It is unrealistic to rely on a single mechanism to assess achievement of the Program Outcomes. Consequently, each outcome is measured by several complementary metrics. Grades, specific assignments in selected courses, and surveys of graduating seniors are all used. Table IV summarizes the specific course in which each outcome is assessed.

For each Program Outcome that is assessed in each selected course, a Mechatronic Engineering Program Outcome Record Sheet is completed each term by the course instructor and submitted to the Program Improvement Coordinator who then places them in the Mechatronic Engineering Program Improvement Plan File and archives them in the MMEEM Resources Community folder on campus Bay server, a repository of Department documents available to Department faculty and staff on-line. Appendix A is a sample of this Excel spreadsheet.

The online Graduating Senior Survey is conducted once each academic year near the end of the spring semester targeting students enrolled in MECA 440B. Students graduating at the end of a fall semester normally will have taken MECA 440B the previous spring and will be included in that survey. Summaries of survey results are archived in the Mechatronic Engineering Program Improvement Plan File. Appendix B contains a copy of the survey instrument.
Mechatronic Engineering Program Outcomes

Table IV

Mechanisms for Assessing Program Outcomes

| Courses | a. Ability to apply knowledge of mathematics, science, and engineering | b. Ability to design experiments to evaluate the performance of a mechatronic system or component with respect to specifications | c. Ability to conduct experiments, as well as to analyze and interpret data | d. Ability to function effectively as members of multidisciplinary teams | e. Ability to define engineering problems | f. An understanding of professional, ethical responsibility | g. An ability to communicate technical matters effectively in oral form | h. The broad education necessary to understand impact of engineering solutions in ethical, economic, environmental, and societal aspects | i. A recognition of need for, and ability to engage in, lifelong learning | j. A knowledge of contemporary issues | k. An ability to use techniques, skills, and modern mechatronic engineering tools necessary for engineering practice |
|----------------------------------|---|--|---|---|--|--|---|---|--|--|
| 1. MECA 380 – Measurement/Instrument | | | | | | | | | | |
| 2. MECA 440A – Mechatronic Design Proj I | | | | | | | | | | |
| 3. MECA 440B – Mechatronic Design Proj II | | | | | | | | | | |
| 4. MECA 482 – Control System Design | | | | | | | | | | |
| 5. MECA 486 – Motion/Mach Automation | | | | | | | | | | |
| 6. MECH 340 – Mechanical Engr Design | | | | | | | | | | |

Outcome a

Many courses in the curriculum strengthen a student’s ability to apply knowledge of mathematics, science, and engineering; thus, a student’s major GPA (which includes all required math, science, and engineering courses) is a measure of a student’s achievement of Outcome a. A major GPA of 2.0 (C) is required for graduation in Mechatronic Engineering with at least a D in each course.

For Mechanical Engineering majors, a minimum of three (3) exams in MECH 340 are used to measure the general competency in applying mathematics, science, and engineering knowledge to solve problems. An average grade of C- or better demonstrates basic competency.

The graduating senior survey reveals students’ perceptions of their abilities to apply math, science, and engineering. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 to the question “Based on your experience at Chico State, how well prepared are you to apply knowledge of math, science, engineering, or technology to solve problems” is considered acceptable.
Outcome b₁

In MECA 440B each student is required to write a test plan to evaluate the performance of the student’s senior project. The test plan is graded by faculty on fail/pass basis.

Two questions on the graduating senior survey reveal students’ perceptions of their abilities to design experiments. The questions are “based on your experience at Chico State, how well prepared are you to design and conduct experiments” and “based on your educational experience here at Chico State, how well prepared are you to plan a test and verification program”. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to each of the questions is considered acceptable.

Outcome b₂

In MECA 380 each student is required to complete at least a laboratory assignment designed to assess the student's ability to conduct an experiment, analyze the data, and interpret the results. An average grade of C or better for the assignment is needed to demonstrate basic competency.

Outcome c

The required course which assesses a student’s ability to design a mechatronic system, component, or process to meet desired needs is MECA 486. The student must receive a C or better on each of the design projects in the course.

Two questions on the graduating senior survey reveal students’ perceptions of their abilities to design components or systems. The questions are “based on your experience at Chico State, how well prepared are you to design a component or system to meet desired needs” and “based on your educational experience here at Chico State, how well prepared are you to integrate a number of parts into a subsystem”. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to each question is considered acceptable.

Outcome d

Multi-disciplinary team projects are conducted each semester in the required course Mechatronic Engineering Design I (MECA 440A). Teams of engineering majors from three or four different programs are formed. The projects involve a feasibility study which has civil, electrical, and mechanical aspects. Each team member is expected to function as an expert in the member’s major area. The projects are presented orally together with a written report. Evaluation of a project includes an assessment of each team member’s ability to work effectively as a member of a team.

While not multi-disciplinary at times, senior project teams in MECA 440A are evaluated each year with regard to teamwork. The grading is done by the faculty on a fail/pass basis.
The graduating senior survey asks the question “based on your experience at Chico State, how well prepared are you to function on a multidisciplinary team”. The question measures the student’s perception of the student’s ability to function effectively on a multidisciplinary team. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better is considered acceptable.

Outcome e₁

Each student does a senior project in MECA 440A and MECA 440B. These projects require teams of students to design, fabricate, and test engineering systems. In the process, each student must demonstrate basic competency in defining an engineering problem. An average grade of C or better for the assignment(s) is needed to demonstrate basic competency.

Outcome e₂

Basic competency in solving an engineering problem is assessed in MECA 482 (Control System Design), a required course. An average grade of C or better for the assignment(s) is needed to demonstrate basic competency.

Outcome f

A basic understanding of an engineer’s professional ethical responsibility is assessed in MECA 440A (Mechatronic Engineering Design I), a required course. An average grade of C or better for the assignment(s) is needed to demonstrate basic competency.

The graduating senior survey reveals students’ perceptions of their understanding of their professional and ethical responsibilities. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to the question “based on your experience at Chico State, how well prepared are you to understand professional and ethical responsibilities” is considered acceptable.

Outcome g₁

Basic competency in oral communication is evaluated in MECA 440A. The competency is graded by faculty at design reviews. An average grade of C or better is needed to demonstrate basic competency.

The graduating senior survey reveals students’ perceptions about their ability to effectively communicate technical matters orally. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to the question “based on your experience at Chico State, how well prepared are you to communicate technical matters in writing” is considered acceptable.

Outcome g₂
Basic competency in written communication is evaluated in MECH 340. An average grade of C or better for the assignment(s) is needed to demonstrate basic competency.

The graduating senior survey reveals students’ perceptions about their ability to effectively communicate technical matters in writing. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to the question “based on your experience at Chico State, how well prepared are you to communicate technical matters in writing” is considered acceptable.

Outcome g

Selected coursework from MECH 340 is evaluated by the instructor to assess students’ abilities to effectively communicate graphically. An average grade of C or better for the assignment(s) is needed to demonstrate basic competency.

Outcome h

The broad education necessary to understand the impact of engineering solutions in a global and societal context is assessed in MECA 440B (Mechatronic Engineering Design II). An average grade of C or better is needed to demonstrate basic competency.

Outcome i

Recognition of the need for, and an ability to engage in, life-long learning is assessed in the required course MECA 440A (Mechatronic Engineering Design I). An average grade of C or better is needed to demonstrate basic competency.

The graduating senior survey reveals students’ perceptions about their ability to continue learning. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to the question “based on your experience at Chico State, how well prepared are you to continue learning” is considered acceptable on both surveys.

Outcome j

A basic knowledge of contemporary issues is assessed in the required course MECA 440B (Mechatronic Engineering Design II). An average grade of C or better is needed to demonstrate basic competency.

Outcome k

Basic competency using modern mechatronic engineering tools is demonstrated in MECA 380 on LabVIEW® programming assignments. An average grade of C or better for the assignment is needed to demonstrate basic competency.

The graduating senior survey reveals students’ perceptions of their abilities to use current mechanical engineering tools. On a scale of 5 (“very well prepared”) to 1 (“very unprepared”), a mean response of 4 or better to the question “based on your experience at Chico State, how well prepared are you to use modern tools and technology” is considered acceptable.
The measurement instruments described above maybe modified slightly by the course instructors for assessing the student’s basic competency in the defined Program Outcomes.

4.4 Summary of Senior Survey

Annually, the Dean prepares a Graduating Senior Survey Summary Report which includes results from all programs in the College.

5. PROGRAM IMPROVEMENT

5.1 Annual Program Improvement Report

Each year, the Program Improvement Coordinator will submit an Annual Mechatronic Engineering Program Improvement Report to the Dean. This report summarizes data collected since the last annual report, makes recommendations based upon this data for areas in which to make improvements, and describes actions taken to improve the program since the last report. The report could include data from:

1. Outcome Assessment Record Sheets from the previous academic year
2. Graduating senior survey
3. Student Evaluation of Teaching (SET)
4. Alumni survey
5. Industrial site visits

5.2 Process to Use Results of Assessment to Improve the Program

Each fall, the faculty meets to discuss the Annual Program Improvement Report, decide if changes in the program are warranted, and, if so, formulate a plan to effect those changes.
Appendix A

Mechatronic Engineering Program Outcome Record Sheet
<table>
<thead>
<tr>
<th>Course: MECA Program Outcome:</th>
<th>Semester: Instructor</th>
</tr>
</thead>
</table>

Description of instruments used in this course to measure attainment of program outcome:

1.
2.
3.
4.
5.
6.

How instruments are used to measure achievement of program outcome:

1.
2.
3.
4.
5.
6.

<table>
<thead>
<tr>
<th>Number of MECA students in class achieving program outcome:</th>
<th>0</th>
<th>=DIV:0!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of MECA students in class not achieving program outcome:</td>
<td>0</td>
<td>=DIV:0!</td>
</tr>
</tbody>
</table>

Comments on the suitability of the instruments used to measure achievement of the program outcome:

Suggestions for possible changes of how achievement of the program outcome can be measured:

Suggestions for improving the program:

Note: Shaded fields are to be filled-in.
<table>
<thead>
<tr>
<th>MECA Program Outcome</th>
<th>Instrument Number</th>
<th>Outcome achieved?</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECA Student Name</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Mechatronic Engineering students in course: 0
Appendix B

Graduating Senior Survey Questionnaire
ECC Graduating Senior Survey
College of Engineering, Computer Science, and Construction Management
CSU, Chico

Dear Graduating Senior,

The College of ECC has developed this Survey to give you a forum for letting us know what you think of your experience at CSU, Chico, and to help us to continually improve the curriculum and services we offer. We care a great deal about the programs and your feedback is essential to helping us provide the highest quality education we can deliver. Thank you in advance for your time and attention to this survey.

We hope the years you have spent with us have enriched your life and provided you with the foundation for a successful career. Please stay in touch!

With best wishes, The College of ECC Faculty

Educational Satisfaction Questions

<table>
<thead>
<tr>
<th>At Chico State, how satisfied were you with the...</th>
<th>Very Dissatisfied</th>
<th>Very Satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quality of teaching by faculty in your department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Quality of teaching by other faculty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Access to faculty in your department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Availability of courses in your department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Quality of courses in your department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Access to laboratory facilities and equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Quality of laboratories and equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Access to computer facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Quality of computer facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Academic Advising from your major advisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Academic Advising from the University Advising Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Career information from your department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Availability of General Education courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Quality of General Education courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. The overall quality of your education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Your overall experience at Chico State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Outcomes Questions</td>
<td>Very Unprepared</td>
<td>Very Prepared</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Based on your educational experience here at Chico State, how well prepared are you to...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Apply knowledge of math, science, engineering, or technology to solve problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Design and execute test procedures (for equipment/hardware components or software)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Analyze, assess, and interpret data/results from test procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Design a component or system to meet desired needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Function in a multidisciplinary team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Identify, formulate and solve technical problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Communicate technical matters in writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Communicate technical matters orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Understand and apply professional and ethical principles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Understand contemporary issues facing society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Use modern tools and technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Appreciate impact of your solutions on society and environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Continue learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. I would recommend my major program at CSU, Chico to others</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
31. Major: [Please Select One...]
32. Graduation Date
 Semester ○ Spring ○ Summer ○ Fall
 Year ○ 2012 ○ 2013 ○ 2014 ○ 2015
33. Did you come to Chico State as a... ○ First-time freshman ○ Transfer
34. How many semesters did you attend Chico State? ○ 1-3 ○ 4-6 ○ 7-9 ○ 10-12 ○ 13+
35. What is your Overall GPA?
 ○ Below 2.25
 ○ 2.25-2.49
 ○ 2.50-2.74
 ○ 2.75-2.99
 ○ 3.00-3.24
 ○ 3.25-3.49
 ○ 3.50-3.74
 ○ 3.75-4.00
36. If you had an internship, co-op, or job related to
 your major while in school, how valuable was the experience?
 ○ Did not have internship, co-op, or job
 ○ Very Valuable
 ○ Valuable
 ○ Somewhat Valuable
 ○ Not Valuable
37. If you were involved in any student/professional society,
 activities, or clubs, how valuable was the experience?
 ○ Was not involved in societies, activities, or clubs
 ○ Very Valuable
 ○ Valuable
 ○ Somewhat Valuable
 ○ Not Valuable
38. Immediately after graduating are you planning to...
 Attend graduate School ○ Yes ○ No
 Begin Working ○ Yes ○ No
If you are **NOT** planning to work full-time, or if you have not begun looking for a job, please skip to Question 13.

39. How many job offers have you received? ○ None ○ One ○ Two ○ Three ○ Four +
40. Do you currently have a job offer that you are likely to accept?
 ○ Yes
 ○ No

41. If you interviewed through the campus Career Planning & Placement Office, how helpful was it?
 ○ Did not interview through campus office
 ○ Very Helpful
 ○ Helpful
 ○ Somewhat Helpful
 ○ Not Helpful

42. If you found a job that you are likely to accept, how did you find it?
 ○ Campus Career Planning & Placement Office
 ○ Faculty/department referral
 ○ Online Posting
 ○ Mailed resume
 ○ Personal Connections
 ○ Other

43. Did you take a comprehensive exam (FE, CMdgT, MFT or other) for your discipline?
 ○ No, did not take
 ○ Yes, and passed
 ○ Yes and did not pass
 ○ Yes and waiting for results

44. If you took a comprehensive exam, did you also attend a review course to prepare you for the exam?
 ○ Yes
 ○ No
MECA Supplemental Questions

Based on your educational experience at Chico State, how well prepared are you to:

<table>
<thead>
<tr>
<th></th>
<th>Very Unprepared</th>
<th>Very Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write verifiable engineering specifications based on customer needs</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>2. Produce a set of dimensioned engineering drawings</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3. Produce a circuit diagram for a printed circuit board</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>4. Produce a wiring diagram for a particular design</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>5. Communicate manufacturing needs, including tolerances, to a technician</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>6. Create a Gantt chart for a project</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>7. Identify the critical path for a project</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>8. Develop a detailed project budget</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>9. Integrate mechanical, electronics, and computing into a subsystem</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>10. Present information for a design review</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>11. Prepare and execute an experimental test plan</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>12. Select hardware and develop software for automated data collection</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>13. Select a material for a specific application</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>14. Solve equations using numerical techniques</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>15. Simulate or write equations of the performance of a system</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>16. Select machine parts and lubrication for a particular application</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>17. Select a motor for a particular application</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>18. In the space provided, please provide additional comments that will help faculty to improve the quality of the education they provide.</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

You Have 3500 Characters Remaining.
Appendix C

Alumni Survey Questionnaire
Alumni Survey

Name: __
Degree Major: __
Year graduated: __
Company name currently working: ___
Current job title: __
Length of time working as an engineer (years): ___
Do you have a graduate degree? __
Have you acquired additional work-related education or training? What kind? ___

Based on your educational experience her at Chico State how well prepared are you to…(Score 1 for not well prepared to 5 for well prepared)

Apply knowledge of mathematics, science, and engineering. Score: ___
Design experiments to evaluate the performance of a mechanical/thermal system or component with respect to specification. Score: ___
Conduct experiments, as well as analyze and interpret data. Score: ___
Design a mechanical system/ component/process to meet desired need within realistic constraints. Score: ___
Design a thermal system, component, process to meet desired needs within realistic constraints. Score: ___
Function effectively as members of multidisciplinary teams. Score: ___
Define engineering problems. Score: ___
Solve engineering problems. Score: ___
Understand professional ethical responsibility. Score: ___
Communicate technical matters effectively in oral form. Score: ___
Communicate technical matters effectively in written form. Score: ___
Communicate technical matters effectively in graphical form. Score: ___
Understand the impact of engineering solutions. Score: ___
Recognize the need for, ability to engage in, life-long learning. Score: ___
Understand contemporary issues. Score: ___
Use the techniques, skills, and modern mechanical engineering tools necessary for engineering practice. Score: ___
Enter the engineering workplace or company. Score: ___

Other needed student learning outcomes.

Comments

