FIGURE

LEGEND
- Campus Center
- Student Origin
- Campus Core

Radial Distance from Campus Center (Miles)
- 0.5
- 1
- 2

Distance from Campus Center Along Roadway Network (Miles)
- 0.5
- 1
- 2

Percent of Students and Miles from Campus Center

<table>
<thead>
<tr>
<th>Radial Miles</th>
<th>Network Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td>Percent</td>
</tr>
<tr>
<td>0.5</td>
<td>28%</td>
</tr>
<tr>
<td>1</td>
<td>68%</td>
</tr>
<tr>
<td>2</td>
<td>83%</td>
</tr>
<tr>
<td>5</td>
<td>99%</td>
</tr>
</tbody>
</table>

NOT TO SCALE

STUDENT ORIGINS AND DISTANCE FROM CAMPUS CENTER

N:\2008Projects\SA_Projects\01263\CSU_Chico_TDM\Graphics\GIS\MXD\Origins.mxd
General Bikeway Classifications

CLASS I BIKEWAY (Bike Path)
Provides a completely separated right-of-way for the exclusive use of bicycles and pedestrians with crossflow minimized.

CLASS II BIKEWAY (Bike Lane)
Provides a striped lane for one-way bike travel on a street or highway.

CLASS III BIKEWAY (Bike Route)
Provides for shared use with pedestrian or motor vehicle traffic.
Factors in Locating & Designing Bicycle Facilities

<table>
<thead>
<tr>
<th>Accessibility</th>
<th>Provide frequent and convenient access from adjacent uses. Provide adequate access for emergency, maintenance, and service vehicles.</th>
<th>Intersection Conditions</th>
<th>Limit the number of intersections and/or enhance intersections to reduce the potential for crashes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>Plant trees where feasible to provide a windbreak and cooler riding conditions in summer.</td>
<td>Pavement Quality</td>
<td>Provide pavement free of bumps, holes, and other surface irregularities.</td>
</tr>
<tr>
<td>Barriers</td>
<td>Design facilities where feasible to provide new connections across impediments such as freeways.</td>
<td>Safety & Security</td>
<td>Limit isolated bikeway segments and provide security at major parking locations.</td>
</tr>
<tr>
<td>Bridges</td>
<td>Design bridges to avoid restricting bicycle access and/or creating hazards for bicyclists.</td>
<td>Skill Levels of Users</td>
<td>Consider the skills and preferences of bicyclists in the facility design.</td>
</tr>
<tr>
<td>Conflicts</td>
<td>Recognize conflicts introduced by different bicycle facility types such as bicyclist-vehicle (Class II), bicyclist-pedestrian (Class I), etc.</td>
<td>Stops</td>
<td>Design to avoid frequent stops that may cause bicyclists to avoid a route or disregard traffic control devices.</td>
</tr>
<tr>
<td>Costs</td>
<td>Maximize user benefits relative to cost.</td>
<td>Traffic Volumes & Speeds</td>
<td>Design on-street bicycle facilities based on road width, traffic volumes, and speeds.</td>
</tr>
<tr>
<td>Crash Reduction</td>
<td>Consider the potential for reducing future crash problems through the location or relocation of a facility.</td>
<td>Truck & Bus Traffic</td>
<td>Design on-street bicycle facilities to account for wide trucks and bus stop locations.</td>
</tr>
<tr>
<td>Directness</td>
<td>Locate facilities along a direct line connecting traffic generators.</td>
<td>Vehicle Parking</td>
<td>Consider how bicycle safety is affected by turnover, density, and design of on-street parking.</td>
</tr>
</tbody>
</table>

Source: AASHTO Guide for the Development of Bicycle Facilities
<table>
<thead>
<tr>
<th>Factors That Influence Transit Ridership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
</tr>
<tr>
<td>Complimentary Transportation Facilities</td>
</tr>
<tr>
<td>Connectivity, Coordination & Integration</td>
</tr>
<tr>
<td>Planning/Scheduling</td>
</tr>
<tr>
<td>Time Efficiency & Running Speed</td>
</tr>
<tr>
<td>Comfort</td>
</tr>
<tr>
<td>Information, Marketing & Promotion</td>
</tr>
<tr>
<td>Relative Travel Costs</td>
</tr>
<tr>
<td>Reliability</td>
</tr>
<tr>
<td>Safety/Security</td>
</tr>
</tbody>
</table>
Factors in Locating & Designing Pedestrian Facilities

<table>
<thead>
<tr>
<th>Connectivity</th>
<th>Develop a cohesive network of sidewalks, paths and street crossings that make walking practical.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>Introduce pedestrian scale lighting to enhance safety and security.</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Consider access to transit and supporting land use. Provide facilities for all user level and ability types.</td>
</tr>
<tr>
<td>Sidewalk Width</td>
<td>Provide sidewalk width proportional to the demand for pedestrian activity.</td>
</tr>
<tr>
<td>Multi-Functional Purpose</td>
<td>Design walkways that are both enjoyable to use and acknowledge the variety of trip purposes they serve.</td>
</tr>
<tr>
<td>Context Sensitivity</td>
<td>Foster a context-friendly environment that has a positive relationship to adjacent land uses, streets, transit and buildings.</td>
</tr>
<tr>
<td>Directness</td>
<td>Provide routes and crossings that are convenient and comfortable for pedestrians to use.</td>
</tr>
<tr>
<td>Intersection Safety</td>
<td>Provide safe, well-marked pedestrian crossings. Ensure that traffic signal timing is adequate.</td>
</tr>
<tr>
<td>Sidewalk Obstructions</td>
<td>Eliminate sidewalk obstructions, such as utility poles, that are barriers to pedestrian travel.</td>
</tr>
<tr>
<td>Vehicle Speed</td>
<td>Implement speed management policies and roadway design features that encourage lower speeds. Consider design elements such as reducing corner radii to slow turning vehicles.</td>
</tr>
<tr>
<td>Barriers</td>
<td>Provide connections across physical barriers such as railroads, waterways, and freeways.</td>
</tr>
<tr>
<td>Conflicts</td>
<td>Recognize potential conflicts introduced by driveways and shared-use (biking/walking) facilities.</td>
</tr>
<tr>
<td>Traffic Volume</td>
<td>Consider the amount and type of vehicle traffic. The roadway environment can be designed to serve traffic and provide a high-quality pedestrian experience.</td>
</tr>
<tr>
<td>Street Crossings</td>
<td>Minimize pedestrian exposure by reducing street width. Reduced lane widths equate to reduced crossing time. In some cases, lanes may be removed if capacity isn't needed.</td>
</tr>
<tr>
<td>Landscaping</td>
<td>Improve the street-level experience with the addition of trees to provide shade and enhance streetscape appearance.</td>
</tr>
<tr>
<td>Horizontal Separation</td>
<td>Provide landscaped buffers and urban design features to enhance user comfort and experience. Angled on-street parking may also provide a practical separation between travel lanes and the sidewalk.</td>
</tr>
</tbody>
</table>

Source: [Feber & Peers]
Transportation Demand Management (TDM) Plan

Primary Goal

- Promote walking, biking and transit as convenient, safe and practical means for campus trips

Objectives

- Address campus transportation impacts in adjacent neighborhoods
- Facilitate a coordinated transportation approach with the city of Chico, specifically downtown
- Enhance campus safety for vehicles, bicyclists and pedestrians
- Reduce campus-related parking demand
- Maximize the functionality of current and future parking supply
- Support campus wide sustainability practices - Reduce greenhouse gas emissions and become “climate neutral”

Chico State is one of the first campuses in the nation to sign a long-range commitment, *American College and University Presidents Climate Commitment (ACUPCC)*, which requires implementation of sustainability practices.