Math 135 Exam 1 Fall 2001

1. Let

\[A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 5 & 0 \\ 0 & 3 & -1 \end{pmatrix} \]

a. Find the LU factorization of \(A \)
b. Find a basis for the column space of \(A \).
c. Find the rank of \(A \),

2. Given the following matrices:

\[E = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 1 & 5 \\ 1 & -2 & 3 & 8 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 2 & 0 & 7 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

Find bases for the column space, row space, null space, and left null space of matrix \(A \).

3. Suppose matrix \(A \) and its reduced echelon form \(R \) are given as:

\[A = \begin{pmatrix} 1 & 2 & 1 & b \\ 2 & a & 1 & 8 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

a. What can you say immediately about row 3 of \(A \)?
b. What are the numbers \(a \) and \(b \)?
c. What is a basis for the null space of \(A \)?
d. Circle the spaces that are the same in \(A \) and \(R \):
 - column space, row space, null space, left null space

4. Suppose \(A \) is an \(m \) by \(n \) matrix of rank \(r \).

a. If \(A\vec{x} = \vec{b} \) has a solution for every right side, \(\vec{b} \), what is the column space of \(A \)?
b. In part (a), what are all equations or inequalities that must hold between numbers \(m \), \(n \), and \(r \).
c. Give a specific example of a 3 by 2 matrix of rank 1 with first row \([2, 5] \).
d. Describe the column space and null space of your matrix in part (c).
e. Suppose the right side, \(\vec{b} \), is the same as the first column in your example (part c). Find the complete solution to \(A\vec{x} = \vec{b} \)