Math 135 Final Exam Fall 2001

1. Given \(A = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 1 & -2 & 1 & 1 \\ -1 & 2 & 2 & -7 \end{pmatrix} \) and its reduced echelon form, \(R = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \).

 The 4 fundamental subspaces are \(\text{col}(A) \), \(\text{row}(A) \), \(\text{null}(A) \) and \(\text{null}(A^T) \).

 a. Give the dimension of each subspace.

 b. Give a basis for each subspace.

 c. What must "c" be so that \(A \bar{x} = \begin{pmatrix} 2 \\ 5 \\ c \end{pmatrix} \) is solvable?

 d. Find the complete solution to part c. when it is solvable.
2. Let $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

SHOW ALL WORK!

a. Why is A guaranteed to have 4 independent eigenvectors?

b. Find the eigenvalues and 4 independent eigenvectors

c. What is the rank of $A + I$?

d. Is A positive definite? Explain.
3. Let a straight line be given by \(y = C + D \cdot t \) and assume that \(y = 0 \) when \(t = 1 \), \(y = 1 \) when \(t = 0 \) and \(y = B \) when \(t = -1 \).

 a. What is the coefficient matrix, \(A \), of the corresponding system:

 \[
 A \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ B \end{pmatrix}
 \]

 b. What conditions will ensure that the system is solvable?

 c. Apply Gram-Schmidt to find \(Q \) in the \(A = QR \) factorization.

 d. Find the projection of \(\begin{pmatrix} 0 \\ 1 \\ B \end{pmatrix} \) onto the column space of \(A \).
4. Gram-Schmidt is \(A = QR \) where we assume the columns of \(A \) are independent (otherwise we would simply throw the redundant columns away).

a. Explain why \(A^T A \) is positive definite (hence the pivots and eigenvalues will be positive).

b. If \(S \) is the subspace spanned by the columns of \(A \), give a formula for the projection matrix, \(P \), that projects onto \(S \). Explain where this formula comes from.

c. If \(U \Sigma V^T = A \) is the singular value decomposition of \(A \), give a formula for the best least squares solution, \(\hat{x} \), to \(A \hat{x} = \hat{b} \) (simplify your answer as much as possible)
a. Explain why every eigenvector of A is either in the column space of A or in the null space of A. (or explain why this is false)

b. From $A = S \Lambda S^{-1}$ find the eigenvalue matrix and the eigenvector matrix for A^T. How are the eigenvalues of A and A^T related?

c. Suppose $A \vec{x} = 0$ and $A^T \vec{y} = 2 \vec{y}$. Prove that \vec{x} is orthogonal to \vec{y} using subspace ideas from the fundamental theorem of linear algebra and part a.