SIERRA NEVADA AUTOMATED SOLAR PANEL CLEANING SYSTEM
PROBLEM
- Dirty Panels
- Decreased efficiency
- Not aesthetically pleasing

PREVIOUS METHOD
- Takes two individuals three weeks to clean panels (biannually)
- Cost $10,000 per year
- Dirty within weeks
- Few available commercial options

ALTERNATIVES
One commercially available alternative with:
- Inferior panel coverage
- No control system

SOLUTION
- Automated solar panel cleaning system
SPECIFICATIONS

• Maintain 90% of current maximum power output

• 5 year payback period

• Reliable
 • Stress system in initial testing to find weak points

• 10 year Life Expectancy
 • Inherent in part selection

• System must not operate between 12pm-6pm

• Withstand local weather extremes
 • $-12 \leq T \leq 47$ degrees C

• Fully Automated

• Aesthetically Pleasing
DESIGN CHANGES

• Bracket eliminated from design

• Switched piping from HDPE to UV-Resistant SolarBlock

• Changed controllers from MicroLogix1400 to Arduino Mega

• Forced to use city water instead of R.O. water

• Size of prototype installation decreased
DESIGN SOLUTION
DESIGN SOLUTION

• Water Delivery
 • City water from hose bib
 • 2” UVR Piping
 • TeeJet v-10 nozzles

• Mounting
 • Simple Bracket
 • Economical

• Controls
 • Arduino Mega
 • Calibration Cells
 • Rain, Freeze, Wind Sensors
 • Valve Relay Boards
DESIGN SOLUTION

- 2" Main
 - Hunter PGV-201 Solenoid Valves
 - Compression fittings to allow for panel rotation and maintenance
 - Pipe Blocks
DESIGN SOLUTION
FABRICATION

- Simple Processes
- Cutting pipe to pre-determined lengths
- Gluing pipe
- Assembling fittings with Teflon tape
- Mounting to panels
- Wiring
TESTING

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output Comparison</td>
<td>Read Panel Comparison</td>
<td>In Progress</td>
</tr>
<tr>
<td>Temperature Durability</td>
<td>High and Low Temperature Exposure</td>
<td>No melting at 140 deg F No cracking when frozen</td>
</tr>
<tr>
<td>Avoid Peak Hours</td>
<td>Inspection of Timer</td>
<td>In Progress</td>
</tr>
<tr>
<td>Maintain 90% Capable Output</td>
<td>Monitor Panel Efficiency</td>
<td>In Progress</td>
</tr>
</tbody>
</table>

- Currently not completely tested
- Delay in design freeze led to delayed installation
- Testing planned to be completed by 5/18/13
FULL SCALE BUDGET

Total Cost (10,000 Panels)

- Labor: $108,000.00
- Material: $64,709.30
- Purchased Parts: $571,960.09
ANNUAL USAGE

- **Water Usage**
 - 2 gallons per cycle (30 seconds), bi-weekly
 - $491.92

- **Electricity Usage**
 - 2 amps per cycle, bi-weekly
 - $1.25

- **Energy Savings @15% increase**
 - $549.72

- **Overall Savings**
 - $56.55
REFLECTION

• Large water consumption

• Collection and reuse method needed

• Design changed vastly over the scope of the project

• Issues with compression couplers (suggest union joints instead)
• Nick Repanich [CSUC]
 • Dr. Kallio [CSUC]
 • Dr. Mehl [CSUC]
• Cheri Chastain [Sierra Nevada]
• Mandy McKay [Sierra Nevada]
• Rusty Sage [Gestamp Solar]
 • Ben Wilson [JW Wood]
• Josh Brannon [PBM Supply]
 “Sprinkler Dave” [Chico Sprinkler]
CONCLUSION

- Efficient and easily expandable system
- Effective cleaning method for maintaining cleanliness
- Meets and exceeds design specifications
QUESTIONS?