SMFG 218 Course Syllabus Fall 2018

SMFG 218- Sustainable Plastics – 3.0 Units

Prerequisite: SMFG 216

Course Times:

<table>
<thead>
<tr>
<th></th>
<th>Lecture</th>
<th>T, R</th>
<th>11 to 11:50 AM</th>
<th>LANG 104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>T</td>
<td>2:00PM to 4:50PM</td>
<td>LANG 118</td>
<td></td>
</tr>
</tbody>
</table>

Instructor:

Prof. Joe Greene (jpgreene@csuchico.edu)
Prof. Nathan Anderson (nlanderson@csuchico.edu)

Office:

Location- O’Connell 416 – Phone: 898-4977 (Dr. Greene)
Hours T, W: 10 AM to 10:50 AM; R: 2 to 4 PM (Dr. Greene)
Location- O’Connell 427 – Phone: 898-5976 (Dr. Anderson)
Hours W, R 1:00 PM – 3:00 PM (Dr. Anderson)

Course Objective: Provide students a thorough study of sustainability for thermoplastic polymers by investigating sustainability definitions, biobased plastics, engineering thermoplastic polymers, and thermoset composites.

Laboratory Objectives: Provide students a thorough knowledge of a plastics and composites molding business, including areas such as set-up, operation, process control, and maintenance of the lab molding machines.

Textbooks:

Reference:

Course Goal

Provide students a thorough study of sustainability, biobased polymers, and engineering polymers.

Student Learning Outcomes

Upon successful completion of this course, students will be able to:
1. Understand the definitions of sustainability.
2. Understand the chemistry of biobased plastics.
3. Understand the processing parameters for biobased plastics.
4. Understand the recycling process of plastics.
5. Understand the processing parameters of engineering plastics.
6. Understand the rheology and plastic flow of polymers during injection molding and extrusion.
7. Measure the melt index, density, and thermal properties of biobased and engineering plastics.

Course Usage of Blackboard Learn
Copies of the course syllabus, lectures, and homework assignments may be found on Blackboard Learn. You are responsible for regularly checking the online resources, which is accessed through the Chico State Portal at http://portal.csuchico.edu.

Safety
Laboratory Safety Policies and Procedures are strictly enforced in the labs. Students will be given safety training and are expected to become familiar with the safety policies and procedures. Each student is required to submit a signed acknowledgement form for safety training before the first lab experiment. A sticker will be placed on the student’s campus ID card upon completion of training.

General
1. Absences are allowed only for illness (doctor’s note required) or other serious reasons with permission prior to the class. There will be grade penalty for absence, arriving after roll call, or leaving before completion of the lab exercise. Three or more absences will result in an incomplete for SMFG 218.
2. Homework problems will be available on BlackBoard Learn. You are required to do the homework and submit the answers online by the due date.
3. **Late work will not be accepted.**
4. You will be dropped from the class if you do not complete the first two homework assignments.
5. Exams are open book and notes. Make-up exams and quizzes are closed book and notes unless prior arrangements are made with the instructor.
6. Students run experiments in groups, all data collection in lab books are individual work. Students are encouraged to work together in data processing, but printing copies of the same figures from others is not allowed. University policies, due process, and sanctions for academic dishonesty are followed.
7. All cellular phones should be turned off in the lecture and lab except with instructor’s permission.
8. Shirts and shoes are required in the laboratory. Sandals and open-toe shoes are not allowed for safety reason. Students who are not safely dressed will be asked to leave the laboratory resulting in an absence.

9. You are responsible for understanding the policies and procedures about add/drops, academic renewal, etc. found http://www.csuchico.edu/catalog/. You should be aware of the new deadlines and penalties for adding and dropping classes.

10. If you need course adaptations or accommodations because of a disability or chronic illness, or if you need to make special arrangements in case the building must be evacuated, please make an appointment with me as soon as possible, or see me during office hours.

11. You must adhere and follow the Code of Professional Conduct while in this class. The code will be available on BlackBoard Learn.

Grading

1. Midterm exam 20%
2. Final exam 20%
3. Quizzes Unannounced 10%
4. Lab (2 papers plus lab book) 30%
5. Papers (2 papers) 10%
6. Homework/Attendance/Participation 10%
7. Reports 100%

Reports (All reports will be typed and double spaced.)

1. **Lab Work (Teams of 4 students)**
 - The lab notebook will be used to record material and manufacturing information during the lab experiments. The notebook will be graded in lab according to effectiveness and organization of the data. The format of the notebook will be provided in class.
 - Lab report**: Each student will participate in a lab group (4 students max) for 12 lab experiments. Each student group is required to complete two lab reports. The technical paper should be 3 to 5 pages typed and double spaced. Format will be provided on BlackBoard Learn.
 - Lab Report 1: Flow analysis of an injection molding part
 - **Due Date- Oct 25, 2018**
 - Lab Report 2: Layup of thermoset composite skateboard
 - **Due Date- Nov 29, 2018**

2. **Technical Paper** (Teams of 2 students) –
 Due Date: Paper 1: Due: Oct 11, 2018; Paper 2: Due: Dec 7, 2018
 Each student team will be responsible for completing two technical papers on Life Cycle Assessment of Biobased or Recycled Plastic Product and a second paper on a work instructions for plastics manufacturing. The work instructions covers molding equipment in the lab and should be written in both English and Spanish. The technical paper should be 4 to 6 pages typed and double spaced. Format will be provided on BlackBoard Learn.
<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter</th>
<th>Homework++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aug 28*</td>
<td>Intro, Environmental Issues Chap 1, 2</td>
<td></td>
</tr>
<tr>
<td>2. Sep 4*</td>
<td>Life Cycle Assessment</td>
<td>Chap 3</td>
</tr>
<tr>
<td>3. Sep 11*</td>
<td>Biobased Plastics</td>
<td>Chap 4</td>
</tr>
<tr>
<td>4. Sep 18*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sep 25**</td>
<td>Petroleum-based Plastics</td>
<td>Chap 5</td>
</tr>
<tr>
<td>6. Oct 2**</td>
<td>Engineering Plastics</td>
<td>(Handout)</td>
</tr>
<tr>
<td>7. Oct 9*</td>
<td>Rheology and Plastic Flow (Handout)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical LCA Paper 1 Due</td>
<td></td>
</tr>
<tr>
<td>8. Oct 16*</td>
<td>Flow Analysis (Handout)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid-term (Thursday)</td>
<td></td>
</tr>
<tr>
<td>9. Oct 23*</td>
<td>End of Life Options</td>
<td>Chap 6</td>
</tr>
<tr>
<td></td>
<td>Flow Analysis Paper Due</td>
<td></td>
</tr>
<tr>
<td>10. Oct 30*</td>
<td>Sustainable Plastics Products Chap 7</td>
<td></td>
</tr>
<tr>
<td>11. Nov 6**</td>
<td>Thermosets (Handout)</td>
<td></td>
</tr>
<tr>
<td>12. Nov 13**</td>
<td>Composites (Handout)</td>
<td></td>
</tr>
<tr>
<td>Nov 20</td>
<td>Thanksgiving Break (No School)</td>
<td></td>
</tr>
<tr>
<td>13. Nov 27**</td>
<td>Thermoset Composites Paper Due</td>
<td></td>
</tr>
<tr>
<td>14. Dec 4**</td>
<td>Tooling (Handout)</td>
<td></td>
</tr>
<tr>
<td>15. Dec 11**</td>
<td>Work Instructions Due</td>
<td></td>
</tr>
<tr>
<td>16. Dec 20</td>
<td>Thursday 10 – 11:50 Final Exam</td>
<td></td>
</tr>
</tbody>
</table>

++ Note: Homework will be due on Tuesday
* Note: Dr. Greene will lead discussions
** Note: Dr. Anderson will lead discussions