Center for Regenerative Agriculture and Resilient Systems

The Science

Effects of herd management and the use of ivermectin on dung arthropod communities in grasslands; J.Pecenka, J.Lundgren, Basic & Applied Ecology, Aug. 24, 2019
dung beetleThis study found that rangelands managed with more regenerative practices and lack of ivermectin applications had greater species richness, diversity, predator species abundance, and dung beetle abundance than more conventionally managed rangelands. The work shows that herd management that aims to mimic intensive grazing of large migrating herds of ruminants can foster dung arthropod community structure, a key trait correlated with nutrient cycling, pest suppression, and productivity of cattle-grazed rangelands. Read the paper.(opens in new window)
Case studies on the economic benefits of cover crops, July 2019
almonds on a treeThe American Farmland trust used a USDA Conservation Innovation Grant to quantify the economic and environmental benefits of soil health practices (no-till, strip-till, cover crops, nutrient management, conservation cover, compost application, and mulching). They also used the USDA’s Nutrient Tracking Tool and USDA’s COMET-Farm Tool to quantify the water quality and climate benefits of these practices. The results, including four 2-page case studies, are available on their site.(opens in new window)
New paper points to soil pore structure as key to carbon storage, July 26, 2019
garden spade in soilNew research by Alexandra Kravchenko, Michigan State University professor in the Department of Plant, Soil and Microbial Sciences, and several of her colleagues provides new insight into how carbon is stored in soils that could support efforts to improve the climate resilience of cropping systems and also reduce their carbon footprints. Read more . . .(opens in new window)  Read the original paper(opens in new window) here.
Conservation agriculture systems; J. P. Mitchell, etc., CAB Reviews, May 29, 2019

field with cover cropsThis paper summarizes how agricultural systems developed into what they are today and identifies ways in which these systems will need to be improved to meet future food security challenges. The core principles and concepts of conservation agriculture (CA) systems provide an important unifying framework. The paper provides evidence for why these systems, when flexibly applied and in ways that mimic natural ecosystems, provide the best approach for moving forward. Read the paper in full.(opens in new window)

Harnessing Soil Microbes to Improve Plant Phosphate Efficiency in Cropping Systems; A. Kafle, etc., Agronomy, March 2019
shovel of soil Bioinoculants are an increasing trend in agricultural practices. This review explores recent advances in our understanding of how arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria help solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Read the full report(opens in new window).
Worldwide decline of the entomofauna: A review of its drivers; F. Sánchez-Bayo; Biological Conservation; Jan. 25, 2019
dead insectAbstract: Biodiversity of insects is threatened worldwide. Here, we present a comprehensive review of 73 historical reports of insect declines from across the globe, and systematically assess the underlying drivers. Our work reveals dramatic rates of decline that may lead to the extinction of 40% of the world's insect species over the next few decades.  Read more . . .(opens in new window)
Natural climate solutions for the United States, J.E. Fargione; Science Advances; Nov. 2018

Sun shining over a meadow with treesAbstract: Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States.  Read more . . . (opens in new window)

Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa, N. Mashavakure; Agriculture, Ecosystems and Environment; Nov. 2018

Jumping SpiderAbstract: Most spiders are generalist predators and important biological control agents of various insect pests of agri-cultural crops. A study was conducted to determine the impact of cultural practices on the abundance and diversity of soil surface-dwelling spiders (Araneae). Two experiments were conducted at the Chinhoyi University of Technology experimental farm, Zimbabwe, over the 2013/2014 and 2014/2015 cropping seasons. Read more . . .(opens in new window)

Climate Change Trends and Impacts on California Agriculture: A Detailed Review, T.B. Pathak, Agronomy, Feb. 2018
Map of California showing the Agricultural Vulnerability index.California is a global leader in the agricultural sector and produces more than 400 types of commodities. The state produces over a third of the country’s vegetables and two-thirds of its fruits and nuts. Despite being highly productive, current and future climate change poses many challenges to the agricultural sector. This paper provides a summary of the current state of knowledge on historical and future trends in climate and their impacts on . . . Read more . . . (opens in new window)
Regenerative agriculture: merging farming and natural resource conservation profitably; C. LaCanne, J. Lundgren, PeerJ, Feb. 26, 2018
corn plantThis paper evaluates the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity. It shows that regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Regenerative fields had ten times fewer pests. And even though regenerative fields had 29% lower yields, profits were 78% higher than traditional corn production systems. Read the full article.(opens in new window)
Root biomass and exudates link plant diversity with soil bacterial and fungal biomass; N. Eisenhauer; Scientific Reports; April 4, 2017
earthworms in soilAbstract: Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that . . . Read more . . .(opens in new window)
The role of ruminants in reducing agriculture’s carbon footprint in North America; W.R. Teague, etc., Journal of Soil and Water Conservation, April 2016
cow grazingBecause of the methane produced by rumen fermentation, ruminants are a source of greenhouse gas and are perceived as a problem. However, research shows that ruminants consuming only grazed forage cover plants under appropriate management result in more C sequestration than emissions. This research editorial concludes that incorporating forages and ruminants into regeneratively managed agroecosystems should be advanced as a policy. It can elevate soil organic C, improve soil ecological function by minimizing the damage of tillage and inorganic fertilizers and biocides, and enhance biodiversity and wildlife habitat. Read the entire editorial. (PDF)
Which agricultural management interventions are most influential on soil organic carbon (using time series data)? N.R. Haddaway; Environmental Evidence; Jan. 29, 2016
cows in a fieldAbstract: Loss of soil organic carbon (SOC) from agricultural land is identified as one of the major threats to soils, as it influences both fertility and the production of ecosystem services from agriculture. Losses of SOC across regions are often determined by monitoring in different land use systems. Results from agricultural field experiments can reveal . . .  Read more . . .(opens in new window)
Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering; Liliana Quiza et al; Frontiers in Plant Science; July 14, 2015
soil fungiAbstract: The goal of microbiome engineering is to manipulate the microbiome toward a certain type of community that will optimize plant functions of interest. For instance, in crop production the goal is to reduce disease susceptibility, increase nutrient availability increase abiotic stress tolerance and increase crop yields. Various approaches can be devised to engineer the plant–microbiome, but one particularly promising approach is to take advantage of naturally evolved plant–microbiome communication channels. Read more . . . (opens in new window)
Plant diversity increases soil microbial activity and soil carbon storage; M. Lange; Nature Communications; April 7, 2015
multi-species cover cropPlant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon (14C) modeling. Read more . . .(opens in new window)
Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes; Wen-Feng Cong et al; Journal of Ecology, 2014
Grassland landscape An 11-year grassland biodiversity experiment investigated whether plant diversity affects soil C and N storage in the absence of legumes. They found that soil C and N stocks increased by 18% and 16% in eight-species mixtures compared to the average of monocultures of the same species, respectively. Enhanced soil C and N stocks also showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. Read more . . .(opens in new window)
Carbon Sequestration: Position of the Soil Science Society of America; SSSA Ad Hoc Committee S893; Oct. 25, 2001

Hands holding soil with an earthworm in itIncreased long term (20-50 year) sequestration of carbon in soils, plants and plant products will benefit the environment and agriculture. Crop, grazing, and forestlands can be managed for both economic productivity and carbon sequestration. In many settings this dual management approach can be achieved by applying currently recognized best management practices such as conservation tillage, efficient nutrient management, erosion control, use of cover crops and restoration of degraded soils. Read more . . . (PDF)